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Nontrivial examples of Krichever—Novikov algebras are constructed. The construction
involves parameters that satisfy eigenvalue conditions. In the linear case, for an r-term algebra,

the eigenvalues are 0,1,...,r — 3.

I. INTRODUCTION

Recently, Krichever and Novikov'? have proposed as
an algebraic extension of conformal invariance on an arbi-
trary genus Riemann surface the study of algebras of the
type

r—1

[Nm’Nn] = 2 Ck(m’n)Nm+n—r+l+2k ’ (1.1)
k=0

where the genus of the surfaceis (» — 1)/3, for r = 1 mod 3.
These will be referred to as Krichever-Novikov (KN) alge-
bras. The work of Krichever and Novikov has been contin-
ued by Bonora et al.> and Mezincescu ez al.* The simplest
and best-known case of a KN algebra is the Virasoro algebra

[LpsL,]=(m—n)L, , ,+ (m—m)cb, o, (12)

which describes conformal invariance on a sphere (genus 0).
This algebra is said to be Z graded and the KN algebras
(1.1) aresaid to be generalized graded. In this article we take
a purely algebraic point of view and raise the question of the
classification of the possible structure constants and their
functional dependence on m, n as permitted by the Jacobi
identities. This is a problem similar to the classification of
finite Lie algebras and we must take care that any solutions
are not simply isomorphic to the Virasoro algebra.

The case r = 1 of a KN algebra (without central exten-
sion) is in general

[Ln,L,]=C(mn)L,,,, (1.3)
and one solution for the structure constant is
C(m,n) = (m—n)la(m)a(n)/a(m+n)], (14)

where the arbitrary function a(m) can be renormalized
away by dividing L,, by a(m). We believe that this is the
only solution, having made the assumption of an ansatz for
C(m,n) as the ratio of multinomials in m, n—but we know
of no general proof of (1.4). However, it turns out that there
are many different possible sets of structure constants
C* (m,n) for a KN algebra with 7> 1.

Let us call such an algebra a three-, four-, etc. term alge-
bra according to the number of terms on the rhs of (1.1).
The determination of allowable structure constants that sat-
isfy the Jacobi identities is an extremely difficult nonlinear
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problem: The number of such identities that arise in the 7-
term case is 2r — 1.

Fortunately, there is a class of allowable algebras for
which the problem may be transmuted to a simpler, al-
though still difficult form, i.e., those for which the operators
N, may be reexpressed as a finite sum of contiguous even or
odd Virasoro generators L,,,:

r—1

Nm = Z ak(m)Lm—r+1+2k .

k=0
The conditions for ,, to generate a KN algebra are still
2r — 1 equations, but the » unknown functions a* (m) de-
pend on one variable rather than two. One may conjecture
that all KN algebras may be expressed as (1.5): Evidence for
this viewpoint will be given in Sec. V. If the relationship
(1.5) can be inverted to express the L’s in terms of a sum
(possibly semi-infinite) of the N ’s, then the algebra is equiv-
alent to the full Virasoro algebra; otherwise, and we shall
exhibit examples, it is an infinite subalgebra.

These algebras may be categorized according to the de-
gree of m in the a* (m): The constraints for a closed algebra
become more complicated as this increases. We shall use a
convenient representation of the Virasoro generators:

L =z"" a .

dz

Within the representation (1.6), Eq. (1.5) becomes a power
series in z:

(L.5)

(1.6)

r—1
N,=3 d(m)z ' -4
K=o dz
We shall demonstrate that there are no constraints for
the case of constant a* (m), obtain eigenvalue conditions for
the parameters in a* (m) for the cases that are linear and
quadratic in m, and present solutions of these that exhibit
remarkable regular integral sequences.

(1.7)

1l. CONSTANT COEFFICIENTS

The KN algebras for which the a* (m) are independent
of m are straightforward and correspond to the well-known
Virasoro case—the structure constants C* (m,n) are just
(m — n) up to multiplicative constants. Indeed, it is clear
from the following theorem that all KN algebras of this form
may be expressed as a sum of L’s.

Theorem 1: If the coefficients a* (m) in (1.5) do not
depend on m, then the N,, form a KN algebra satisfying
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(1.1) with C* (m,n) = (m — n)a*.
Proof: If the a* (m) are constants, (1.7) becomes
r—1

_i_ d
Nm — Z akzr 1 2kzl—m_
K=o dz

d
_ 1—m %
=g(2)z 7

defining g(z) as a power series. When forming, the commu-
tator [N,,,N, ] terms symmetric in m, n cancel, leaving only
the part where z! ~ " is differentiated,

2.1

[N, ] = (m = m(g(2)z —m L
dz

< k 1—(m+ +1+2A)d

=(m—n a~g(z)z ~\m+n—r v

) 2, D p2

r—1

=(m“—n) zakNm+n—r+l+2k' (2'2)
k=0

Comparing (2.2) with (1.1) gives the result.

Alternatively, if p(2) is an elliptic or hyperelliptic func-
tion of z satisfying (p'(z))* = g(p(z)), where g(p) is a polyno-
mial of finite degree in p, then

N, =p'(z){p(z))“"'—'+'% (2.3)
=g(p)p“'""*‘7‘;—. (2.4)

Commuting (2.3) givesasumof N'’s. If g(p) is a polyno-
mial in p?, the N,, form a KN algebra, with constant coeffi-
cients. Putting L,, = p' ~ ™ (d /dp) makes (2.4) equivalent
to (1.5).

lil. LINEAR COEFFICIENTS

If the a* (m) depend on m the problem is much harder.
When forming the commutator, g(z) is a function of m, so
there are more antisymmetric terms and the proof in Sec. II
for the constant case no longer works. We need to find the
constraints on the a* (m) to obtain a KN algebra. The Jacobi
identities are satisfied automatically since we are making the
assumption that N,, is a sum of L ’s. The condition for a KN
algebra is that the N ’s satisfy (1.1) for some structure con-
stants C* (m,n). The way to check this is to express N,,, and
N, as sums of L’s, commute them, and ensure that the re-
sulting sum of L ’s may be expressed as a sum of N’s:

?

[N,N] = 2N

! t
[EL,EL] - =L
We shall start by considering the following ansatz for
KN algebras linear in m:

1 1y-2, ,.d
No=(tm+pztm—p)L)z+ 1) 2 mL
z z dz

a.1)

and we shall find the possible values of the parameter f for a
closed algebra. The ansatz (3.1) was chiosen on the basis of
experiments using the computer algebra package REDUCE,
which indicate that all such algebras may be expressed as
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(3.1) or our later generalization. Note that (3.1) isinvariant
up to sign under z+— — 1/z, m— — m: We shall refer to this
as the parity automorphism. This is the remnant of the auto-
morphisms of the Virasoro algebra generated by
L, + (1/4)L,,,. The original KN algebra has a different
normalization for the N’s. In Ref. 1 the normalization is
chosen so that the end structure constants are given by

C Y mn)=(m—n),

C°(mn) = (m—n)a(m)an)/a(m+n—r+1)].
(3.2)

The conditions of parity invariance are then

N_,=Fa(—m)N,, am)a(—m)= —1

(.3.3)

Equations (3.3) imply that the general structure of a(m) is
given by

(3.4)

a(m) =4[ — iy
i m+p;
where the B; and 4 are constants. Our ansatz corresponds to
the case where there is only one factor in the product. The
merit of this ansatz is that the 2r — 1 conditions for closure
reduce to »+ 1 linear equations for » unknowns, giving a
single consistency requirement. The commutator may be
calculated as

[N..N,]=(m— n)[((m +f)(n+f)z

+(m—f)(n—f) %)(z-i— l)

Z

(3.5)
2r—4
ST (AL L
z dz
or, as a power series in z, as

[NosN, ] = (m—n)

(’_ 1)<m +1)n+f)

k
r -1
X 3 +(; 1)(m—f)(n—f)
k=0 -
r—2
Xz"z"(z+—!—)h2z‘_”“"—d—. (3.6)
z dz

Equation (1.1) may also be expressed as a power series
in 2 by using the ansatz (3.1) for N,, and rearranging the
summation:

[(NrslV, ]
Y (C"'(m,n)(m+n—r+2k+l+f) )
K=o +C* M mpY(m+n—r+2k—1—f)
r—2
xz’—z"(z+i) 2-mnd (3.7)
z dz
where C ~!(m,n) = C" (m,n) =0.
Fairlie, Fletcher, and Nuyts 958



Theset of ¥ + 1 equations obtained by equating the coef-
ficients in (3.6) and (3.7) may be written as a determinant
which must be zero for all m, » for a closed algebra. We shall
illustrate this for the case r = 5, from which the general case
is evident. We remove the factor of {m — n) and define

A=(m+f)n+f),

4
m4n—4+f 0 0 0 0 (O)/l
4 4 3
m+n—4—f m+n—-2+4f 0 0 0 (1>/1+(0),u+(0)v
4 4 3
0 m+n—2=/ mtn+f 0 0 Qy+(J”+Q%
4 4 3
0 0 m+n—f m+n+2+f 0 (3)/14-(2)#4-(2)1/
4 4 3
0 0 0 m+n+2—f m4+n+d+f (4)/1+(3)y+<3)v
0 0 0 0 m+n+4—f (:),u

p=(m—f)n=r), (3.8)

v

= —4 (-1,

We will treat A, 4, and v as arbitrary parameters in the first
stage of the analysis. Then for = 5 the determinant is

This may be reduced by row and column operations. Put R’ =R1—-R2+ R3 — R4 + --- . Then it is evident that the
combinatorial factors in the last column cancel and that f=0 is an eigenvalue. Then perform C5 =C5+ C4,

C4' =C4 4+ C3, etc., giving

2f 0 0
m+n—4—f 2m+2n—6 m4+n—-24f
0 m+n—2—f 2m+2n-2
0 0 m+n—f
0 0 0
0 0 0
Finally, RS =R5—R6,R4 =R4 -R5,.., yielding
2f 0 0
m+n—4—f m4+n—4+f 0

0 m+n—2—f m+n—2+f
0 0 m+n—f
0 0 0

0 0 0

This is then 2f times a 5 X 5 subdeterminant which is equiva-
1¢nt§ to the determinant in the four-term case with f'shifted to
f -h: 1. Thus the five-term matrix has a zero at f = 0 and also
at zeros of the four-term case shifted by 1. It is clear that the
same row and column operations will work for the r-term
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0 0 0
: o (k)
m+n+f 0 (:)/1 + (‘:),u + (::)v
2m+2n+2 m4+n+4+2+f (:)/1+(:),u+(;)v
anacs amvnre (oo (b
0 m+n+4—f (:),u
0 0 0
0 0 (ke
: o (rrlohGr
miner 0 Qe ()
m+n+2—f m4n+2+f (;>/l+(g),u+(§)v
0 m+n+4—f (g)ﬂ

|
case, which has zeros at f= 0, f* + 1, where the /' are the
zeros of the {r — 1)-term case. The three-term determinant
has a single zero at f = 0, completing the inductive proof that
the r-term case has zeros at f = 0,1,...,r — 3, regardless of 4,
M, and v. It should be noted that the £ = 0 case is not interest-
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ing since the factor m may be normalized away. Explicit
calculation of the three-term determinant with A, ¢, and v as
in (3.8) shows that the case with » = 3 has extra zeros at
f = 1,2: These zeros do not carry over in the above induction
since they are removed by the shift in /.

This simple family may be extended by noting that the

only properties of the binomial coefficients (n) used in the
i
above proof are that IX7_,(— 1)'(7) =0 and

—1 -1

(’: 1) + (n . )= (’Z) There are other sets of coeffi-
— i

cients that satisfy these conditions—those in the expansion

of (z+ 1/2)""9(z— 1/2)%, which we shall refer to as

(€3]
(n) . When g = 0 these reduce to the ordinary binomial
i

n \@ n\ (@

coefficients. Note that ( ) = (— 1)"( ) , L.e., the
n—1 [

parity automorphism still holds, and that

n— 1\e-D n_l)(q—l) n)(q)
(z’—l) —(i =(1’ ‘

There is very similar inductive proof for the family

also

1 1 r—2-gq

(3.9

which has the three parameters r, g (¢g<r—2), and p
(p = 0,1). The algebra is closed for the following values of f:

0, if p=0, g=r—2,

f= 0,12, if p=0, g=r-3,
1ol r—=3—gq, ifp=0, g>r—3,
0,1,ng—1, if p=1.

The solution (3.9) has positive parity if r — 1 — ¢ + p is
even. If we abandon the parity requirement, then we can find
more general solutions with two free parameters, e.g., in the
four-term case,

N,=(m+f)L,,s+cm+f+L, .,
+ (C2/3)(m +f+ %)mel

+ @2 (m+f+2)L,, _, . (3.10)

This is simply a transformation of the previous solution of
the form
L,—3¢"L,, 0o (3.11)
The parity requirement is tantamount to the imposition of
unitarity or antiunitarity. Thus the eigenvalue condition
plays a similar role in the restrictions on the ¢ number for

unitary representations of the Virasoro algebra found by Be-
lavin et a/. and Friedan et al.®
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IV. QUADRATIC COEFFICIENTS

The form of construction for linear coefficients general-
izes to second order in m. We shall choose a basic ansatz
which respects the parity operation:

N, =|(m*+am+b)Z> +2(m* + ¢)

3 d

+ (m? —am +b)—1—2](z+i)’7'z"’"—. (4.1)
z z dz

In the case (4.1) there are two eigenvalue equations since
there are » + 2 linear equations for the 7 structure constants.
For the simplest example, ¢ = b; the ansatz (4.1) reduces to

N, =|(m?>+am+ b)z

r—2
1 ) zlﬁ"’i (4.2)

+ (m* —am + b)—l—](z+ —
z z dz

and there is only one eigenvalue equation remaining since
¢ = bis a solution to the other one. Note that if @ is zero the
ansatz (4.2) is trivial since the C* (m,n) are constant; this is
because the N, can be renormalized by dividing by the fac-
tor (m? + b). Also, if bis zero it reduces to the linear case by
dividing N,, by m with a replaced by f, so it is no surprise
that a satisfies the same conditions as /. For the general case,
the linear equations that must be solved for the structure
constants take the form

Fim+4+n—r+14+2)C’(m,n)
+Hm4+n—r—142)C’'~(m,n)
+Gm+n—r—34+2)C’~*(m,n)

4 _
=(m—n) Y (r 3.)R,-,

i (4.3)
i=0 -

where

F(m)=m’>+am+b, H(m)=2(m?+c),
Gm)y=m?>—am+b=F(—m),
R, = F(m)F(n),
R, =F(m)H(n) + F(n)H(m)

+ [2/(m —n)J(H(m)F(n) — H(n)F(m)),
R, =H(m)H(n) + F(m)G(n) + F(n)G(m)

+ [4/(m — n)|(F(n)G(m) — F(im)G(n)),
Ry =H(m)G(n) + H(n)G(m)

+ [2/0m — ) |(H(n)G(m) — H(m)G(n)),
R,=G(m)G(n),

and where j=0,.,,4+1 and C~%(m,n) = C ~'(m,n)
=C (mn)=C"*"(mn) =0.

The conditions for these equations to admit a nontrivial
solution are that the following (r + 2) X ( + 1) matrix is of
rank r for all m, n:
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r -3
F(s—r+1) 0 0 0 2?=0(:)__i)Ri A
‘ r—3
H(s—r+1) F(s—r+3) 0 0 3o 1 l«Ri
-3
G(s—r+1) H(s—r+3) F(is—r+5) - 0 2}‘=o(r2 l.)R.-
« (r—3
0 G(s—r+3) H(s—r+5) - 0 3o 3 l.R,-
‘ r—3
0 0 G(s—r+5) - 0 2o 4 iRi
0 0 0 o Gs+r—1) 3t ('“3 )R
L =0\rt1—i/ )

where s = m + n. The way we approach this problem is by using row and column operations to introduce two rows of zeroes,
which puts constraints on a, b, and c.
It proves convenient to define the following functions:

Atkx) =kG(x —2) + H(x) —kG(x), ®(k)=F(x)—ACkx+2k)+G(x+2k), OCkx)=A(kx)—2Gx).
(4.4)

Note that @ is independent of x and may be written as
®(k) = 4k? — 4k — dak + 2b — 2; 4.5

also, note that A(0,x) = H(x).
We now subtract each row from the one preceding it, starting at the bottom of the matrix and working upward.

r ®(0) — @0 T 20 )
Hs—r+1)—Gs—r+1) ®(0) o FeO =z 0(:) T)R"
Gs—r+1) HGs—r43)—Gs—r+3) -  +&(0) (r1 t)R'
0 G(s—r+3) F PO (72 t)R"
B
\ 0 0 Gls+r—1) 2'=°(r—i R'J

Next we add columns, starting with the penultimate one and adding the one before, working from right to left. We then repeat
the previous operation of subtracting rows, this time stopping at the second row.

®0) 0 0 0 0
O0s—r+1) d(1) —P(1) + ®(1) 0 \
A(l,s—r+3) _ o (r—S)
Gs—r+1) —GG—r43) d(1) Fo) 3 o O—iRi
A(l,s—r+5) “ (r—S)
0 G(s—r+3) —G(s—r+5) + ®(1) DI l—iRi
0 0 Gis—r+5) - Fa) 2;‘20(;—_?.)&-
\ 0 0 0 o G(s+r—1) 3t 0( '_15 )R/

We then repeat the previous operations 7 times, each time operating on one fewer row and column. The top part of the
resulting matrix is then
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®(0) 0 0

®©0,s—r+1) d(1) 0
Gis—r+1) O(l,s—r+3) D(2)
0 Gs—r+3) O2,s—r+5)
0 0 G(s—r+5)
0 0 0
and the bottom part is

0 O(r—3) 0

0 O(r—3,5+r—15) P(r—-2)

0 G(s+r—75) O(r—2,s+r—3)

0 0 Gis+r—3)

0 0 0

All the solutions (i.e., values of ¢, a, and b that give this
matrix rank #, corresponding to closed algebras) that we
have found are such that two of the ®’s are zero, which we
shall label ® (k) and ®(k + /). If none of the ®’s are zero it
is easy to prove that r = 4. For r> 4 the possible algebras
(4.1) all fit into a parametrization of ¢, a, and b in terms of &,
[, and j, given by

c=b-2k(k+1),
a=2k+1-1,
be {(k+j)(k+1—j— 1),
arbitrary, [ odd,
k=0,..,r—5,
I=1,..,r—4—k,
k=0/l=r—3 r—2
k=1l=r—4"
k=2l=r—4%

[ even,
where [

or (4.6)

O(k,x) Ok+1) 0

G(x) Ok+1,x+2) D(k+2)
0 G(x+2) Ok+2,x+4)
0 0 G(x+4)

-

0 0 0

0
0 0
0 0
@(3) 0
O3,s—r+7) 0
G(s—r+T7) 0
0 R,— R, +R,—R,+R,
0 R, — 2R, + 3R, - 4R,
(r—1) R, - 3R, + 6R,
O(r—Ls+r—-1) R, — 4R,
G +r—1) R,

and where j=0,...,}/ — 1(I even). The marks ®, ¢, and ¢
indicate special cases which will be explained later.

If & (k) = 0for some k<r — 5, thenrow k + lisa lin-
ear combination of the previous rows, assuming that k is the
smallest zero of . Row & + I 4 1is also a linear combina-
tion of previous rows, provided that ®(k + /) =0 (where
k +1<r—4) and that the determinant made from rows
(k +2),.,(k+{ 4+ 1) and columns (k + 1),...,(k+ 1) is
zero. For example, the top two rows are all zero if ¢(0) = 0,
$(1) =0, and ®(0,s — r + 1) = 0, where the determinant
in this case is just one element.

Now, if ®(k) = ®(k + 1) = 0, then q, ¢, and the other
@’s are fixed:

a=2k+1—1, c=b-2k(k+ 1),

7 (4.7)
Pk+)=4(j-D.

The size of the determinant is / )X/ and is of the form

(=3l eR o]
- O 00 ©

Gx+21—4) Ok+I1—1,x+21—2)

If /is odd then the above determinant is automatically zero (independent of ). By elementary row and column operations the
determinant may be rewritten as an antisymmetric determinant of odd dimension and hence vanishes. Otherwise, for even /,

the determinant vanishes if

b= (k+j)(k+1—j—1), for j=0,1,.4— L

(4.8)

We shall illustrate this for / = 6, from which the general case is evident. We shall make two further substitutions to simplify

the expressions:
b'=b—k(k+1—1), u=2k—-—x)-3.
The determinant then becomes

962 J. Math. Phys,, Vol. 30, No. 5, May 1989
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All the lower diagonal elements may be made proportional
to b’ by column operations. When this is done the top left
element turns out to be zero, so that if ' = 0, the determi-
nant is zero. One may then restore the determinant to a simi-
lar continuant form to the above by row operations. We re-
peat the column operations on the last four columns, so that]

S(u~3) ~20 0 0 0 0
Hu~13)0(u—3)+ b 3u417 -3 0 0 0
0 Hu—9N(u+1)+b’ u+33 —36 0 0
0 0 Wu—5)(u+5) +b' — (u—133) -32 0
0 0 0 Yu— D) (u+9) + b —QGu—17) —~20
0 0 0 0 Wu+3Nw+13) 46" —5u+3)

0 —20 0 0 0 0

b’ — (u—13) —32 0 0 0

0 Lu—13)(u+3)+b" 0O —36 0 0

0 0 b’ —4 —Hu—T) -3 0

0 0 0  u—9(u+1+b" 0 ~20

0 0 0 0 b'—6 —B(u—1)

It}Te lower diagonal entries have a factor (b’ — 4); again a
zero appears on the diagonal [in the (3,3) position]. We
restore the continuant form again by row operations on the
last three rows. Finally, we repeat the column and row oper-
ations on the last two rows and columns, giving

Manifestly, the value of the determinant is 144006 '(6' — 4) (b’ — 6), with the zeros as given by (4.8).

There are two identities relating the R;:
RO—RI +R2—R3+R4=¢(0)®(1) y

R, — 2R, + 3R, — 4R, = 2®(0)((a — 2) (m + n) — (1)),

(4.9)
(4.10)

which introduce extra solutions for closed algebras. If ®(0) = 0 or ®(1) =0, (4.9) implies that there is another zero in the
last column, giving an additional value of / for k = 0,1, marked". If #(0) = 0 [or ®(1) = O and @ = 2] then (4.10) implies
that there are two extra zeros in the last column, so there is yet another value of / permitted if k = 0, marked “. If ®(2) =0,
P (r — 2) = 0,and r> S thereis also a solution. In this case, the $(2) serves a dual purpose: It allows the third row to be made
zero and allows us to make two extra zeros in the last column in the (r — 2) and (r — 1) rows. These rows are
(0 d(r—3) 0 0 RO—RI+R2—R3+R4)
0 - O(Ur—3s+r—5 Dr—-2) 0 R, —2R,+3R,—4R,/
However, if (2) =0, then R, — 2R, + 3R; — 4R, = P (0)P(1) (s — 4) and the values of ® and © may be calculated to

give
(0 —4(r—35)
0 -+ =2(r=%Gs—4

0 0
0 0

showing that adding the required multiple of column r — 2
to the last column makes the two entries shown zero. Thus
the determinant of the same form as above with & = 2 and
I =r —12 is the only other condition. These solutions are
marked ¢.

In the same way as for the linear case, the matrices for
r=3 and r= 4 are special and their eigenvalues must be
calculated explicitly. We classify the results in Table L.

It is possible to make a similar generalization to (3.9) by
replacing some of the factors of (z+ 1/z) in (4.1) by
(z—1/2).

V. DISCUSSION

In this paper we have raised the question of the classifi-
cation of allowable KN algebras with a parity constraint and
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D (0)P(1) )
1D(0)D(1) (s —4)/’

r

have found a pleasing integral regularity in the solutions for
the parameters in our ansitze. The simplicity of the resuits
belies the tortuous route to their discovery and makes us
wonder whether there may be a deeper understanding be-
hind them. Indeed, it is surprising that there are any zeros of
our determinants independent of m, n.

A pertinent question arises as to whether these algebras
are in fact merely transformations of the original Virasoro
algebra. In those cases where (1.5) can be inverted to solve
for L,, in terms of a sum, albeit infinite, of N’s, then this just
creates a representation for L,, in terms of pseudodifferen-
tial operators.” For the linear solutions the a* (1) have ze-
ros which prevent this inversion for all L’s; thus they are
genuinely different. [The matrix of the set of linear equa-
tions (1.5) from m = — « to a given m is lower triangular:
If the diagonal contains any zeros, it is singular.] Similar
results hold for the quadratic case, when b is such that the
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TABLE I. Allowable quadratic KN algebras up to r = 7.

[4 a b k !
r=3 b 0 free 0 1*
1 0 28
2 free 3
r=4 b 0 free 0 12
1 0 20
b—2a 2 free i 1#
3 2 2°
4 5 3
b—4a+4 4 3 2 1?
r=35 b 0 free 0 1
1 0 2°
2 free 3
b—2a 2 free 1 1*
r==6 b 0 free 0 1
1 0 2
2 free 3*
3 0,2 4°
b—2a 2 free 1 1
3 2 20
b—4da+4 5 6 2 24
r=17 b 0 free 0 1
1 0 2
2 free 3
3 0,2 4>
4 free 5¢
b—2a 2 free 1 1
3 2 2
4 free 3*
b—4a+4 4 free 2 1
6 free 3

*The r = 3,4 cases are special.
*Using (4.9).

¢Using (4.9) and (4.10).
9See text.

quadratic F(m) factorizes. Note that this always happens
when b is not arbitrary.

Returning to the general problem of whether the KN
generators can be expressed in terms of a finite sum of Vira-
soro generators, we adduce some evidence for this hypothe-
sis from an examination of the structure constants for the
second highest term. In the KN normalization the leading
constant, as we have remarked, is simply (m — n). At the
next stage the Jacobi identity is linear in the structure con-
stant C"~2 (m,n) and is, explicitly,
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[((m—n)C""*(m+n+r—1p)

+(m4+n+r—3—p)C""*(mn)] +cyclic=0.
(5.1)

Putting p = 1 — r we can solve for C"~? (m,n) in terms of
C"~*(m,1 —r) through

Cmny=Hm-nC" *m+n+r—11-r)
—(m—-—n=2)C""*(m1 —7r)
—(m—n+2)C""*(n,1 —=1}.(5.2)

The remarkable property of (5.2) is that it is also a solution
of (5.1) for all m, n, and p. Furthermore, if one looks for a
representation for &, of the form of (1.5) the coefficients
are given by

a " Y(m)=1,

a i m)=C""'ml—r+(m+nra=*(1—-r).
(5.3)

Of course, this is only a first-order identification, but it holds
promise that similar connections may be deduced for further
terms in the expansion. This conjecture is supported by com-
puter experiments using REDUCE.

We have not discussed the possible central terms in the
algebra. Such terms will be automatically induced by what-
ever representation is employed for the Virasoro generators.
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Simple methods of construction of indecomposable representations of inhomogeneous Lie
groups are considered and applied to the Poincaré group.

1. INTRODUCTION

In the last two decades there has been an increasing in-
terest in the study of indecomposable representations of Lie
groups and algebras. From the point of view of mathematical
physics the attention is naturally focused on groups that
present themselves as symmetries of physical models, and in
this respect prominent roles are played by the homogeneous
and the inhomogeneous Lorentz groups.' In particular, in-
decomposable representations of these groups have been
considered in connection with unstable particles,”* and it
has been conjectured that they might prove significant, per-
haps even “essential” (Dirac*) as a basis for new rigorous
theories of interactions. _

The purpose of this paper is not to discuss such conjec-
tures, but rather to provide, for a class of Lie groups that
includes the inhomogeneous Lorentz group (Poincaré
group), and for their Lie algebras, simple methods of con-
struction of indecomposable representations of a kind that
might turn out to be suitable for applications.

The first part of the paper describes a method of con-
struction that applies to any “inhomogeneous” Lie group
and its Lie algebra. Although in the case of the Poincaré
group the indecomposable representations so obtained es-
sentially coincide with the ones determined by Barut,?
Ragzca,® and Guichardet® via Mackey’s induction tech-
nique, we believe that the method presented here deserves to
be brought to attention for its simplicity, and because it can
be regarded as a particular application of the more general
construction considered in Sec. I1I.

While each of the representations directly obtainable by
the method described in Sec. II has irreducible subquotients
that are mutually equivalent, the more general method de-
scribed in Sec. I1I can also be used to construct indecompos-
able representations possessing preassigned inequivalent
subquotients. In contrast with the simpler situation of Sec.
I1, the actual possibility of such an “assemblage’ of two rep-
resentations now depends, in general, on the structure of the
latter.

In Sec. IV the method is adapted to the particular case of
the Poincaré group %, where certain simplifications arise.
By way of illustration, it is shown how to recover the *“natu-
ral representation” of & by 53X 5 matrices, and the special
representations obtainable by the simpler construction of
Sec. II. Finally, examples of indecomposable representations

2> Temporary member of MSRI, Berkeley, CA.
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of Z with inequivalent unitary subquotients are exhibited;
but a full classification of such representations has not been
attempted yet.

II. INDECOMPOSABLE REPRESENTATIONS WITH
EQUIVALENT SUBQUOTIENTS

By inhomogeneous Lie group we mean a Lie group
G = NH with a semidirect product structure with respect to
a commutative normal closed subgroup & and to a closed
subgroup H. (In particular, G could be any inhomogeneous
orthogonal or pseudoorthogonal group, e.g., the inhomo-
geneous Lorentz group.)

Given an inhomogeneous Lie group G with Lie algebra
g, we shall show that to each irreducible faithful representa-
tion p of g on a complex (possibly infinite-dimensional) lin-
ear space ¥ there corresponds a series of indecomposable
representations R ,,, of g, parametrized by an arbitrary com-
plex number i and an arbitrary integer n. If p is finite dimen-
sional, each R, generates an indecomposable representa-
tion of G, the connected component of the identity of the
group G. If p (not necessarily finite dimensional) generates a
unitary representation of G, the representations R,,,, gener-
ate indecomposable representations of G, at least for real
values of the parameter p.

A. Indecomposable representations of the Lie algebra

The assumptions on the structure of G imply that its Lie
algebra g is a semidirect sum of the Lie algebras nand § of ¥
and H, respectively, n being a commutative ideal of g, so that

[9.61CH, (1
[nhlCn, (2)
[n,n] =0. (3)
For a given representation

pry—-p(y)  (yeq)

of the Lie algebra g, denote by

Py: x—p(x) (xeh)

the restriction of p to b. For a given integer n, consider the
direct sum " R of n copies of p;, so that the representation
space "V is constituted by the ordered n-tuples of vectors of
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the representation space V¥ of p. Each n-tuple will be regard-
ed as a column matrix

vl

2

(v'el),

n

v

and briefly denoted by {v}. [Similarly, any square matrix
with entries 4} will be denoted by {a;}, or simply , the upper
index referring to the rows and the lower index to the co-
lumns (ij = 1,2,...,n).]

The representation "R is characterized by the action

(v

POV

"R(y) {v'} = ={p(y)v} for yeb. (4)

(x)v"

There are many ways to extend the representation "R of
b to arepresentation of g. Of course, one could take the direct
sum R of n copies of p, characterized by the action

RN ={p(nv} (re).

But one can also define, more generally, a representation R,
such that

R, (y) ="R(y),
with "R (y) defined as in (4), and

for yeb, (5)

R, W {v} ={alp(»)v}, for ven, (6)

where a={a;} is an arbitrarily fixed complex nX n matrix.
[ The summation convention on repeated indices is adopted.
Therefore the right-hand side of (6) represents a column
matrix. All indices run from 1 to ».]

It is easy to check that (4)—(6) actually define a repre-
sentation of g. In fact, by construction "R is a representation
of b, so that

R, (xR, (x2) — R, (x2)R, (xy)

=Ra([X1’X2])1 forXUX2eb'

Moreover, since the operators p( ) are linear and for ven the
map v—p(v) is a representation of the commutative Lie al-
gebra n, from (6) and for v,, v,en one has

(R, (v)R, (v;) — R, (v;)R, (v))) {v}
={aid, (p(v))p(v2) — p(v)p(v))V'}
={aja)p([v;,v, )0} =0,

so that
R, (v))R,(v2) — R, (v2)R,(v)) = R, ([v},7,]),

for v,,v,en. Finally, for yeh and ven one gets, from (5) and
(6),

(R, (MR, (x) — R, ()R, M)’}
={ajle(p(x) —p(X)p(M)}
= {ap([v,y 1)} =R, ({v;yD{v},
where R, ([v,y]) has the form (6), correctly on account of
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(2). Hence one gets the desired commutation relations for
the representatives of any basis of g with elements belonging
either tonorto .

Consider now two representations R, and R of g con-
structed as above, from the same representation p but by
means of different complex matrices a and 8. Here R, and
Ry are equivalent representations whenever a and f are
equivalent matrices.

In fact, let m={m}} be an invertible matrix such that
a = mfBm~"'. On account of the linearity of the operators
p (), for the linear map M of "V onto itself defined by

M. {v}->M{vY={m},

one has {p(y)mjv’} = {mip(y)v'} so that, on account of
(4) and (5),

R,(Y)M="R(Y)M=M"R(y) =MR;z(y), for yeh.
On the other hand, one has

{ajp(Mmiv*} = {mBip(v)v'}, (N
so that, on account of (6),

R, (V)M =uR;(v), forven (8)

The relations (7) and (8) exhibit the equivalence of the rep-
resentations R, and R.

Therefore, without loss of generality, in our construc-
tion it can be assumed that the matrix {e}} has Jordan ca-
nonical form. To each Jordan block

w 1. 0. 0

L. L
. '.0

0
7

there corresponds a representation of g, which will be de-
noted by R,,,, parametrized by a complex number p (the
common value of the diagonal elements) and an integer »n
(the dimension of the block). Notice that R,, is just the
representation p itself.

It is evident that if p is irreducible, and faithful, each
representation R,,, is indecomposable, with irreducible sub-
quotients all equivalent to R,,, .

We shall now consider two types of sufficient conditions
in order that the representations R, of the Lie algebra g
generate representations of the connected component of the
identity of the group G.

B. Indecomposable representations of the group

If the representation p: y—p(y) of g is finite dimen-
sional, it generates a representation p: g—p(g) of G,. In this
case the representation R,,: y—R,,(y) of g generates a
representation R,,,: g—R,,(g) of G, whose restriction to
Hy,=HNG, coincides with the direct sum of » copies of the
restriction of p to H,, while for any element of ¥V of the form
exp v (ven), one has
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up(v)y  p(v) 0 0
up(v) pv)y O 0
R, (expv) =ex :
p(v)
0 up(v)
1 p(»)  (172D)(pWM)-[1/(n = DI (p(v))
1 p(») [/ (n =D p(W))" 2
= exp(up(v)) - : 9)
p(v)
0

(to be interpreted as acting on {v'} by matrix multiplication
on the left).

If the representation p: y—p(y) of g (now not neces-
sarily finite dimensional) generates a unitary representation
p: g—p(g) of G, again the restriction to b of the representa-
tion R,, of g generates the direct sum of » copies of the
restriction of p to H,,. In the representation p of G, the ele-
ments of NV of the form exp v (ven) are represented by uni-
tary operators of the form exp p(v), where p(v) is skew
adjoint. If u is real, up(v) is also skew adjoint, and
R, (exp v) is well defined and given by (9).

Thus for any choice of £ and # in the finite-dimensional
case, and at least for real values of 4 and arbitrary n when p
gives rise to a unitary representation of G, the representa-
tions R ,, give rise to indecomposable representations of G,

itl. A MORE GENERAL CONSTRUCTION

Given two representations p and o, we shall say that
they can be assembled (in the given order) if there exists an
indecomposable representation R with a subrepresentation
equivalent to p and quotient equivalent to o.

With the same assumptions on G as in Sec. 1I, we now
consider the problem of assembling two of its representa-
tions, p and o, without assuming that they be mutually
equivalent. We shall also allow p and o to be reducible, so
that indecomposable representations of increasing length
might be obtained by repeated use of the assembling process.

A. The assemblage of two representations

First, in analogy with the construction of Sec. II A, and
with similar notations, we construct the direct sum R of the
restrictions p, and g, of p and o to the Lie algebra b, acting
on the linear space V=V, & V, of vectors v=( ,'ﬁ‘; ). In this
representation the representative R(y) of an element y of )
acts on ¥ according to the scheme

(Y G“)ﬂ(%)
R(X) (V )—» 0 0‘(1/) v, .

(28

(10)

The representation R could be extended to a representation
of g by representing the generic element of i by

A p(v) 0)(0,,)
R(v): (U) (0 av)/\v, /)’

L2

(11)

and this would simply give the direct sum of p and ¢. But if
we wish the extended representation R to be indecompos-
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1

-
able, with a subrepresentation p and quotient o, we can try to

replace the operators R(v) given by (11) by new operators

of the form
(%)~ 1))

R(): (vo) ( 0 ov)/\v” (vem),
where, for each ven, 7(v) is a linear map from V, into v,
li.e, 7(v)eL(V,,V,)], and v—7(v) is a linear map from n
into L(V,,V,).

The choice of 7 must be compatible with the commuta-
tion relations (2) and (3) of the elements of n with the ele-
ments of §, and of the elements of n with each other. In terms
of the basis elements in the finite-dimensional spaces h and n,
such commutation relations give two finite sets of ‘““assem-
bling conditions” involving 7. The problem is to see whether
for given p and o there exist nonzero choices of 7 satisfying
such conditions, and, if so, to determine the possible choices
of 7 explicitly.

(12)

B. Elementary examples

Before proceeding to the application of the method to
the Poincaré group, let us consider two simple examples pro-
vided by the Euclidian group of the plane. In this case the
generic element of G will be denoted by (t,@), where
t = au + bv is the translation vector with components a and
b with respect to axes x and y oriented as the unit vectors u
and v, @ is the angle of rotation, and the action on the plane
xy is given by
(tp): (xpy)->(xcos@

—ysing +axsing +ycosg + b). (13)

The generators e, e,, and e, of the one-parameter sub-
groups of rotations and translations along the axes satisfy the
relations

[eo’el] =€y,
[eosezl = —ée

[61,62] == 0.

(14)
(15)
(a) Let p and o be the representations of G given by
plt.p))=e® o((te))=1.

The representation spaces ¥V, and ¥, are one dimensional
and one has

pley) =1, ple)) =0, p(e) =0,
o(e) =0, o(e)) =0, o(e;)=0.

Vittorio Cantoni 967



In R one has

;0
R(eo) 2((1) 0)

and we want to represent e, and e, by

0 0
reo=(g 5} &e=(5 5)

The commutation relations (14) give ir) = 7, it = — 74,
while (15) is automatically satisfied. So we can take 7, = 1,
7, = i. Exponentiating

i 0 0 1 0 f)
"’(0 0)’ “(o o)’andb(o 0

we get
R ((0,¢))
=(e: 10), R((au,O))=(g ‘:), R ((bv,0))
_(o ib)
01
so that

i@ b
]

The action on vectors of ¥, @ V', of the form (7 ) is given by

(z) (e“” a+ ib) (z) _ (e"”z +a+ ib)
1 0 1 1/ 1 ’

and, setting z = x + iy, from this indecomposable represen-
tation we recover the full action (13) of the group on the
plane.

Thus, in this example, the assemblage of two representa-
tions of G in each of which the translations were represented
trivially gives rise to a faithful representation of G.

(b) Now choose p and o such that

plt@) =e™?, of(t,p))=e™*
Again V, and ¥V, are one dimensional. We have

R(eo) = (”n1 . O),

0 im,
and we want to represent e, and e, by

0 0
R(e')z(o g)’ R(ez)z(o :;)

The relations (13) and (14) now give i(m, — m,) 7, = 7,,
i(m; — m,) 7, = — 7|, from which it is easily inferred that
if 7 does not vanish, one must have m, = m, + 1. No further
restriction is imposed by the remaining condition (15).

This example shows that the assemblage is possible, in
general, only if the given representations p and o satisfy cer-
tain compatibility conditions.

IV. APPLICATION TO THE POINCARE GROUP

Henceforth we shall assume that G is the Poincaré
group Z, N is the four-dimensional subgroup of space-time
translations, and H the covering group Sl (2,C) of the homo-
geneous Lorentz group. In a suitable basis {m,,,p.} (where
the indices take the values 0,1,2,3 and @ < b) the structure of
the complexified Lie algebra is given by
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[MapsMeg] = — i(8ocMpy + 8paMac — BaaMpc — BbcMad)s

(16)
[MasPc] = i(8cPa — 8acPs)> (17)
[Pop:] =0 (18)
(where ggo= — 811 = —8n= —8u=1).

Let p and o be representations of g. We shall denote by
{*M,, P.} and {°M_,,°P.} the corresponding representa-
tives of the basis elements {m_,,p. }. They satisfy commuta-
tion relations analogous to (16)-(18).

We consider the problem of constructing a representa-
tion R by assembling p and o.

A. Reduction of the assembling conditions

In the representation R (whenever it exists) the repre-
sentatives of the basis elements of g will be denoted simply by
{M_,,P.}, so that the commutation relations corresponding
to (17) and (18) are

[Mab’Pc] =i(gbcPa —'gach )’ (19)
[P,.P.] =0. (20)

According to the construction of Sec. III A, the opera-
tors M, and P, acting on the direct sum of the representa-
tion spaces ¥, and ¥, should be schematically represented
by matrices of the form

()6
6 M, 0 °pP )’
where the entries with a label p or o are operators acting on
V, and V,, respectively, while the entries 7, are linear maps
from V, to V.

Setting My, = N, the set of assembling conditions (19)
can now be replaced by the single equation

[N3’[N3’PO]]+PO=O: (22)

which is a consequence of the commutation relations (19)
themselves: in fact, it can be shown® that whenever it is possi-
ble to determine an operator P, satisfying (22), there exists a
unique set of operators P,, P,, and P; (determined by P, and
by the commutation relations) such that the four P,’s satisfy
all the conditions (19).

Similarly, it can be shown’ that the operators P, com-
mute with each other, as required by the set of assembling
conditions (20), if and only if the single equation

[PO,[PO’NS]] =0

holds.
Thus our problem is reduced to the solution of the two
equations (22) and (23), where P, has the form

(2
P(,:(PODTO)
0 °P,

and the unknown in 7.

Since p and o are representations of g, so that the pair of
operators (#P,,°N;) and (“F,,°N,) already satisfy equations
analogous to (22) and (23), it is easily seen from the matrix
representations of P, and V; that (22) and (23) themselves
are equivalent to the two equations

(PN3)?70 + 79(°N3)* — 2°Ny7o “N3 + 70 = 0,

(21)

(23)

(24)
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and
PPyTo “N3 + PNy Py + 7o °Py °N3 + PN; PPy1,

— 2(75 °N Py + PPy PN,7o) = 0. (25)

B. Simple examples

(a) Let p be the representation of the homogeneous Lor-
entz group on four-vectors of Minkowskian space-time, ex-
tended trivially to Z (i.e., the translations are represented
by the identity transformation). Let o be the trivial one-
dimensional representation of Z (i.e., every element of & is
represented by the identity). Then, with respect to an ortho-
normal basis {e,,e,,¢,,¢;} in space-time, # N, has the form

0 0 0 ¢
0 0 0O
0 0 0 of
i 0 0 0

°N,,” P,, and 7 P, are zero, and it is easy to check that in this
case no actual restriction is imposed on the choice of 7, by
conditions (24) and (25). Thus p and o can be assembled by
means of any nonzero linear map from ¥, to ¥, represented
on the direct sum ¥, & ¥, by a 5X 5 matrix of the form

0000 =
0000 7
0000 7
0000 7
0 00 0O
If, in particular, we wmake the choice 735 =1,

74, = 15 = 15 = 0, We get a representation of the Lie algebra
which generates, by exponentiation, the representation of 7
by 5X 5 matrices describing the natural action of the group
on space-time,

» a ¥ A" 4 a
x! a’ x! Aix' +a'
x* |- A a == AX'+a4*|,
x* a x? AX' 4+ @
1t/ \o o 0 0 1 1 .

where A is the 4 X4 matrix representing the homogeneous
part of the transformation, and the a”s are the components
of the translation vector.

(b) Let p be any faithful representation of &, and let o
be equivalent to p. Now the representation spaces ¥, and ¥,
can be identified, and V=V, @ V,. Here N; and P, have the
forms

Ny = ("N3 0) p ("Po 7'0) ,
0 *N, 0 7P,
and since p is a representation of Z, it must satisfy Egs. (22)
and (23), i.e.,
(PN3)2 PPy + PPy(°N3)?* — 2°N,PPPN, + PP, = 0, (26)
(PPy)? PNy + PN (PPy)? — 2°P NP, = 0. Q27N
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It is immediately seen that in this case Eqgs. (24) and (25)
coincide with (26) and (27) if one chooses

7o =P,

This is a special case of the construction of Sec. II, which
could be entirely recovered by a slight generalization of this
example and iteration.

C. Examples of representations with irreducible unitary
subquotients

Consider the representation of the principal series of
S1(2,C) associated with the integer or haif-odd integer j, and
with the real number A such that the operators

F= ——;— Z (1‘4‘,,,)2

a<h

and
1
G=—YN M M,
7 > oM

have eigenvalues 1 + 4% — 2 and j, A, respectively. Denote
by H ‘% its representation space.

It has been shown in Ref. 7 that for each j, (positive,
negative, or zero) the direct integral representation 7% of
S1(2,C) acting on the direct integral of Hilbert spaces

Hju — Jw H(ju-i) d/{

can be extended, by means of suitably defined operators P,,
to a representation U’ of the Poincaré group 2 which is a
realization of the irreducible unitary representation with
zero mass and helicity j,.

On the other hand, an equation identical to our present
condition (24) was considered in Ref. 9, where the unknown

was a map P é"}é from H' to H % (corresponding to our pres-
ent map 7, from ¥, to V). It was shown that the equation
admits nonzero solutions provided that j, =j,+ 1 or

Jé = Jjo» and that the solutions depend on arbitrary functions.
It can be shown that if our representations g and o are identi-

fied with U® and U k. respectively, such functions can be
chosen in such a way that the assembling condition (25) is

also satisfied. Therefore U » and U” can be assembled pro-
vided that ji = j, + 1 orji =j,-
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In this paper the reports on collectivity and geometry are concluded, where the microscopic
description of many-body collective motions and their relation with the symplectic geometry of
the n-particle system are reexamined. In the present paper it is shown that, modulo linear
canonical transformations, the symplectic algebra sp(6,R) admits only three maximal
subalgebras sp(2,R) & 0(3), u(3), and cm(3), which contain the rotation algebra o(3). The
objective is to discuss the spectra and shapes of “pure” many-body systems for which the
Hamiltonian is associated with a Casimir operator up to the second degree in the generators of
a given maximal subalgebra, as well as those of “transitional” systems, where the Hamiltonian
is a function of the generators and Casimir operators of several of the maximal subalgebras.

I. INTRODUCTION AND SUMMARY

In this paper we intend to conclude our reports on “Col-
lective and Geometry”'~> by discussing in a systematic fash-
ion the group theory behind a symplectic model of collective
motions of an n-body system in a d-dimensional space,
where d is an arbitrary integer. After determining a// the
maximal subalgebras of sp(2d,R) that contain the genera-
tors of the orthogonal subalgebra o(d), we shall particular-
ize our discussion to the physical case when d = 3. Our ob-
jective will be to determine the spectra and shapes of “pure”
many-body systems whose states are characterized by irre-
ducible representations (irreps) of the maximal subalgebras,
as well as those where the Hamiltonians involve a mixture of
Casimir operators of the different maximal subalgebras, i.e.,
“transitional” systems.

Our analysis will proceed along the following lines. In
Sec. II we derive the maximal subalgebras of sp(2d,R) that
contain the generators of the orthogonal subalgebra o(d),
modulo linear canonical transformations in the phase space
of the n-body system. The discussion leads only to three
maximal subalgebras u(d), sp(2,R) ® o(d), and cm(d) for
d>3, but allows for three more when d = 2.

In Sec. III we discuss the spectra of the Hamiltonians
for the “pure” many-body systems associated with the three
maximal subalgebras mentioned above. We also introduce
those operators whose expectation values can give us the
shapes of the eigenstates of these Hamiltonians.

In Sec. IV we introduce the monomial basis state for
irreps of sp(6,R ) in the positive discrete series®: With its help
we discuss the spectra and shapes of “transitional” systems.

Finally, in Sec. V we discuss the conclusions that can be
derived from the present paper, as well as from the entire
whole series of this work.

2) Fellow of the “Deutscher Akademischer Austauschdienst” (DAAD).
® Member of El Colegio Nacional.
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Il. MAXIMAL SUBALGEBRAS OF sp(24d,R)

We start by considering an 4-body system of particles in
d-dimensional space. If we eliminate the center of mass mo-
tion and designate by x., p,, i=12,.d, s=12,.,
n=4A — 1 the Jacobi relative coordinates and momenta, the
generators of sp(2d,R) can be written as

My = §(DisPss — XisXj5)s (2.1a)
Ny = J(Xiupss + Pis%;s), (2.1b)
Rij = 1(Pulys + X;5X5), (2.1¢c)
L; = (x,p; — XiPis )y (2.1d)

where the repeated indices s are summed from 1 to # and all
generators are obviously Hermitian.

The M;, N, R; are symmetric in the indices /
J=1,2,...,d, while L; is antisymmetric; thus the total num-
ber of generators is

3d/2)(d+ 1)+ (d/2)(d—1)=d(2d + 1). (2.2)

The commutation relations are as follows:

[Mij’Ml"f] = [N;pNy ]
= — [RyRy ]
= (i/16)(L;,8,, + L;6,
+ Ly + Liiby), (2.3)
[Mij’Ni'f ]
= (—1i/4) (Ruj‘aji’ + ij(sq‘ + Ru‘ ajf + Rji 5:’:" )s
(2.3b)
[R;M; ]
= (i/4) (M‘fﬁﬁ' + IVJ: ‘Sii + M:”aj/’ + eréir ), (2.3¢)
[¥;R; ] _
= (i/4) (M8, + M8, + M8, + M;5,),
(2.3d)
© 1989 American Institute of Physics 970



M,
Lu’ N
R,
M, M,
= —1 ]Vif i + Nil' i
Rif Rn‘
M, M,
jvjl‘ i N]]" i (233)
[LiLiy ]
= — l(L,j(S,wj + Lj,-'(s,-i + ij‘sii' + L“(sji ) (2.3f)

The L are the generators of the orthogonal subalgebra
o(d) of sp(2d,R). As noted by van der Jeugt and Meyer,” an
important step in obtaining the maximal subalgebras of
sp(2d,R) is to decompose its generators into their irreduci-
ble parts with respect to the o(d) subalgebra.

Just as x,,, p,, corresponds® to the irrep [1] of o(d), the
M;, N;, R;, which are symmetric in the indices, i, j, must

J

< aM; +BN; + 7R aM; +B'N; + ¥R, a’M, +B"N,; +7"R;
‘a’"M+b"N+c"R

“aM+bN+cR  'aM +b'N +cR

This form of writing the generators of sp(2d,R) has the
following advantages.

(i) Once we have one of the terms of the upper row of
(2.7) suchasaM;; + B N; + ¥R for a given i, j we can, by
commuting the term with L; as in (2.3e) obtain this linear
combination for all other / j indices. Thus from the begin-
ning we write the linear combination for all possible , j in the
traceless tensors of the upper row.

(ii) The lower row of (2.7) is formed by linear combina-
tions of the scalars R, M, N with respect to o(d) Lie algebra
and thus they commute with L;. Furthermore, these linear
combinations close under commutation since from (2.3b)-
(2.3d), we obtain

[M\N} = —iR, [RM]}=iN, [NR]=iM. (2.8)

Thus the linear combinations are the generators of an
sp(2,R) algebra.’

(iii) The commutators of the terms in the lower row of
(2.7) with those in the upper row correspond to the irrep [2]
of o(d) and thus necessarily give combinations of the trace-
less tensors M;;, N, R, i.e., linear combinations of terms in
the upper row.

(iv) The commutators of two terms in the upper row of
(2.7) now give linear combinations of the traceless tensors

M;, N;, R; and the scalars M, N, R since from (2.3) we
obtain, for example,
(R, M, ]
= i{§(N;6; + N, 6; +N;8; +N,6;)

—d “'5,.ij]~ —d “5,«ng}

—ild ‘26,,-5,7 - (2d)“6,.].6j,.

— (2d)7'8,6;)N. (2.9)
971 J. Math. Phys., Vol. 30, No. 5, May 1989

also correspond® to the irrep [2] or {0] of o(d), while L i
which is antisymmetric in i, j, corresponds to irrep [1?] of
o(d). Obviously® the irrep [0] is associated with the scalars

R=R,, (2.4a)
M=M,, (2.4b)
N=N,, (2.4c)

where repeated indices are summed from 7/ =1 to d, while
the irrep {2] is associated with the traceless tensors

R,=R, — (R/d)8,, (2.52)
M, =M, — (M/d)é,, (2.5b)
N,=N; — (N/d)é;. (2.5¢)

The set of d(2d + 1) generators (2.1) can be written
inside angular brackets as

<Lij:Mij,Nij’Rij)9 l!]= 1:2’---9d, (26)

but, as suggested by van der Jeugt and Meyer,’ they could
also be expressed in terms of independent linear combina-
tions of the scalars M, N, R and of the traceless tensors M
N;; R, as '

i

>. 2.7

-
Itis important to notice that the term in the curly brackets in
(2.9) is different from zero when d>3, but vanishes for
d = 2 since then

Nll = %(Nll - sz) = — N22- (210)

We shall show in the Appendix that this difference in the
behavior of (2.9) for d>3 and d = 2 is responsible for the
fact that there are only three maximal subalgebras in the
former case, while there are six for the latter.

We now apply expression (2.7) for the set of generators
of sp(2d,R ) having properties (i)—(iv) to the derivation of
the maximal subalgebras of sp(24,R).

We start by suppressing the upper row of generators of
sp(2d,R) in (2.7) and asking whether the remaining ones
form a maximal subalgebra. We note from property (i) that
if we add one of the traceless tensors, say M; with fixed i, j,
we obtain all the other components by commutation with
L. Furthermore, from (iii) and (2.3) we note that the com-
mutation of M; with R, N would give N, R;; thus we can-
not add any generator of the upper row of (2.7) without
recovering the full set of generators of sp(24,R). Thus we
conclude that

(L, ,RM,N) (2.11)

iy

is already a maximal subalgebra; from (2.3f) and (2.8) it
actually corresponds to the subalgebra

sp(2,R) @ 0(d). 2.12)

From the discussion of the previous paragraph we see
that we do not obtain a maximal subalgebra if we suppress
only one of the terms of the upper row of (2.7), so the next
possibility is to suppress one term from the upper and one
from the lower row. Without loss of generality we can then
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suppress the last column in (2.7) and ask ourselves whether
the remaining terms, i.e.,

< aM; + BN, + ¥R; a'M,; + B'N; + V'R,

“aM + BN+ cR  "aM4+b'N+cR

can give us a maximal subalgebra. For this to be the case the
generators in (2.13) must close under commutation and,
since we have 12 real parameters in a, b, c, etc. this is likely to
occur in an infinite number of ways. We must then distin-
guish between different types of maximal subalgebras rather
than the maximal subalgebras themselves.

Note that the type of maximal subalgebra will not
change if we carry out a linear canonical transformation of
the x,, p,, to xJ,, pk, which implies a transformation of the
bilinear expressions L, M;, N, R, in x,,, p;; givenin (2.1)

toLj, M}, N, R inxj, pj. Since the commutation rules

(2.3) follow from
[Xiss2i ] = i‘Sijas: (2.14)

we have the same rules for the primed generators since a
canonical transformation maintains the commutation rela-
tion (2.14) for x;;, p;;. Thus the structure constants in the
subalgebras remain the same in the primed and unprimed
picture and the statement at the beginning of this paragraph
is justified.

From the analysis of the previous paragraph we con-
clude that we must only discuss maximal subalgebras “mod-
ulo” linear canonical transformations: Since the ones related
with rotations in d-dimensional space are irrelevant for our
analysis we shall concentrate on the simple'®

x;s xis
(p,):.(l ‘u)(p ), Ar—puv=1,
is v T is

where A, i, v, 7 are real numbers independent of i, s.
We can write the most general real matrix of determi-
nant 1 in the form

(/1 /,L)_(cosgv
v 1) \sing

0 8 —si
x<e _9)(°f’ X mx). (2.16)
) 0 e siny cosy
Now, taking into account the definitions (2.1) of M, N,
R; in terms of x,,, p, and the corresponding definition for
M}, N, R} interms of xj, p;;, we see that when the phase
space variables are related by a rotation in ¢ we have
M; cos 2¢ sin2p  O\[M;
N, |=| —sin2¢p cos2¢p OfN; |

R} 0 0 1/\R,

v

} (2.13)

(2.15)

— sin ¢)
cos @

(2.17a)

we have a similar result when the rotation is in y. On the
other hand, for the dilation in @ we obtain

M cosh 26 0 —sinh20\/M;
N; = 0 1 0 N; |}
R} —sinh260 O  cosh 28 R;
(2.17b)

We now return to the set of generators in (2.7) to try to
see whether they close under commutation “modulo” a con-
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venient canonical transformation. For this purpose we first
will express the linear combination

aMij+BNij+yRij (2.18)
in a canonical form.

If the real coefficients a, 3, ¥ satisfy

(¥P—B*—a®)>0 (2.19a)

we can carry a canonical transformation by rotation of an
angle ¢ to make the new B =0 and replace ¥, a by
v = & cosh 6, a = & sinh 6, which clearly satisfy (2.19a) as
82> 0. We then see that the transformation (2.17b) leads to
the canonical form R, for (2.18) when (2.19a) holds.

If the coefficients satisfy

(¥ —B*—a*) <0 (2.19b)

we can, as before, carry a canonical transformation by rota-
tion of an angle @ to make the new 8 = 0 and now replace ¥,
a by y=245sinh 6, a =345 cosh 8, which clearly satisfy
(2.19b) as — 8% <0. We then see that the transformation
(2.17b) leads to the form M. Now, using a rotation by an
angle 7/4 in y space we see, from an expression similar to
(2.17a), that M;; can be transformed to N;. Thus in this case
we have the canonical form N for (2.18) when (2.19b)
holds.

Finally, if

(rY—B*—a’)=0 (2.19¢c)
we again use the rotation in ¢ to make 8 = 0 and

YY—a’=0 or y= ta, (2.20)
which leads to the two canonical forms

—1
R, +M, = {f{i’? :‘2 _1((1;@1;;“ ))(Z-]]' (2.21)
2 [ Aists ksXks )0y

The forms (2.21) are equivalent since the canonical trans-
formation x}, = p,,, pi, = — x,, takes one into the other. We
then retain R; — M;; as the canonical form of (2.18) when
{2.19¢) holds.

In studying the types of maximal subalgebras we can
then restrict the first linear combination of the generators
appearing in the upper row of (2.7) to one of three canonical
forms depending on whether (* — B2 — a?) 20, i.e,,

R, (P —B*—a%)>0,

aM; + BN, + yR; -1 Ny, (V¥ —B*—a*) <0,
Rij—Mij! (7’2—52—‘02)=0.
(2.22)

For example, ifin (2.22) we select the first term, i.e., R,
then the coefficients a, b, c; &', B', ¥'; @', b, ¢’ in the remain-
ing terms in (2.7) must be chosen in such a way that the
commutator of any pair of generators is a linear combination
of them. This gives a number of relations between the coeffi-
cients mentioned and, as shown in the Appendix, we arrive,
up to multiplicative constants, at a maximal subalgebra
whose generators are

(L;,R;,R), u(d). (2.23)

We shall later identify this subalgebra with the d-dimension-
al unitary one, i.e., u(d), as indicated in (2.23) .

i
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If we begin with the second term in (2.22), i.e., N;;, we
arrive, via the same analysis (also given in the Appendix), at
a maximal subalgebra whose generators are

(L,,N,,R; —M;,N.R — M); cm(d). (2.24)

We shall later identify this subalgebra with the d-dimension-
al collective motion one, i.e., cm(d), as indicated in (2.24).

If we begin with the last term in (2.22),ie, R; — M,
the analysis in the Appendix leads us again to (2.24); there-
fore, we do not obtain a new maximal subalgebra.

All of the above results hold when d>3. If d = 2, the
considerations mentioned in (iv) following Eq. (2.9) allow
other maximal subalgebras besides (2.11), (2.23), and
(2.24). Again, using the results of the Appendix, besides
(2.12), (2.23), and (2.24) when d = 2, we obtain the fol-
lowing maximal subalgebras:

if

(LN;,M;,R), sp’(2,R) @sp”(2,R), (2.25a)

(LIZ’le’Mij,N>9 0(371); (225b)

(L,z,R,;,- — M,-;,(R,»j + M,-j) + eN,j,(R — M)+ (2/€)N).
(2.25¢)

Again, we shall later identify the subalgebras (2.25a) and
(2.25b) with sp’(2,R) @sp”(2,R) and 0o(3,1), respectively.
The maximal subalgebra (2.25¢) is a new one, in which we
have the arbitrary real parameter €.

Now, having obtained the generators of the maximal
subalgebras, we proceed to justify their names.

We have shown that from (2.3f) and (2.8) the maximal
subalgebra whose generators are given by (2.11) corre-
sponds to sp(2,R) & o(d).

The generators (2.23) can be written as

(L;:R;), (2.26)

where the L, R;; are given by (2.1c) and (2.1d); in the case
d = 3 these are precisely the generators that Elliott'' asso-
ciates with u(3). For arbitrary d these generators will be the
generators of u(d), as can also be checked from some of the
commutation relations in (2.3a), (2.3e), and (2.3f).

It is equally easy to see that the generators of (2.24),
which we can write as

(L Ny, R, — M), (2.27)
correspond to the cm(d) Lie algebra since the L;, N; de-
fined by (2.1b) and (2.1d) are the generators of the general

linear algebra in d dimensions, while from (2.1a) and (2.1c)
we have

R, - M; =1x.x;, (2.28)

g

ij

which is an Abelian subalgebra associated with the mass
quadrupole of the many-body system. Together, (2.27) and
(2.28) correspond to the definition of collective motion Lie
algebra as given by Rosensteel and Rowe'? and Weaver et
al.'? for the case d = 3.

To identify the additional maximal subalgebras (2.25a)
and (2.25b) that appear in the case d = 2, we first introduce
the creation and annihilation operators

17;‘5 = (l/ﬁ)(x:s - ipis)’ gis = (l/\/i)(x:s + fp:‘s)‘
(2.29)

Inverting relations (2.29), we can express the generators
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appearing in (2.25a) and (2.25b) in terms of 7,, and £,. We
then compare the generators with those of Eq. (4.7) of Ref. 5
and conclude that, as already indicated in (2.25a) and
(2.25b), they correspond to the maximal subalgebras

sp'(2,R)®sp”(2,R), o(3,1). {2.30)

We now proceed to discuss the spectra of the Hamilto-
nians associated with the maximal subalgebras for d = 3 and
the shape of the corresponding eigenstates.

1ll. SPECTRA AND SHAPES OF “PURE” SYSTEMS

We could say that the analysis of Sec. II indicates the
existence of only three “pure” cases in the symplectic mod-
el—sp(2,R) ®0(3),u(3), cm(3)—as shown by the vertices
in the triangle in Fig. 1, and of “transitional” cases corre-
sponding to any point in the perimeter of or inside the trian-
gle (except for the vertices).

In this section we discuss the spectra of Hamiltonians
associated with the three pure cases and indicate how the
shapes of the corresponding eigenstates can be determined.
In Sec. IV we sketch a similar analysis for the transitional
cases.

A. The case of sp(2,R)®20(3)

In our discussions we deal with a definite irrep of
sp(6,R) in the positive discrete series given by a partition
involving three non-negative integers. Following the nota-
tion of Ref. 6 we denote this irrep by

(A5 A3 hss], (3.1)

where the index 3 is convenient when discussing the mono-
mial basis® used in Sec. IV.

The generators of the maximal subalgebra
sp(2,R) @ 0(3) are the L, of (2.1d) and M, N, R of (2.4);
from (2.3f) and (2.8) the Casimir operators are

L?=\L,L, (3.22)
T*=R?>—~M?*—-N>=R(QR-1)
— (M +iN)(M — iN). (3.2b)

cm(3)

@- o

sp(2,R)@0(3) u(3)

FIG. 1. Diagrammatic representations of the pure cases in the symplectic
model represented by the closed circles in the vertices of a triangle indicat-
ing the maximal snbalgebras sp(2,R) ® 0(3), u(3), and cm(3). The transi-
tional cases correspond to all other points in the perimeter or inside the
triangle.
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Of course, L ? is the total angular momentum with the
eigenvalues /(/ + 1) with the integer /, while L, is its projec-
tion along direction 3 with the eigenvalue
m=10LI—1,.,—1

We denote by r the eigenvalue of the operator

R =}t(pispis +xis-xis)’ (33)
2R is the Hamiltonian of the harmonic oscillator, and 4ris a
non-negative integer that gives the irrep of the subalgebra
#(2) of sp(2,R). Finally, we note from (3.2b) that M — iN
is the lowering operator® of sp(2,R); thus a state of lowest
weight in this algebra vanishes when we apply M — iNon it.
If in this case we denote the eigenvalue of R by ¢t instead of by
r, we see from (3.2b) that the eigenvalue of T2 becomes
f(t — 1), while the possible values of » in that irrep of
sp(2,R) are

r=t t+1, (3.4)

We can now express the basis for the irrep in the positive
discrete series of the chain sp(6,R) Dsp(2,R) @ 0(3) as the
ket

|{A13hpshss)a trim), (3.5)

where [A,3h,3043]1, ¢, 7, I, m are, respectively, the irreps of
sp(6,R), sp(2,R), »(2), 0(3), 0(2) and « is the multiplicity
index which distinguishes between repeated irreps of
sp(2,R) ®0(3) contained in a given irrep [A,3h,3k53] of
sp(6,R). An explicit procedure for constructing states of
type (3.5) is given in Eq. (7.2) of Ref. 3, with which one can
also determine the values of / compatible with [A,3/,3h3,]
and ¢.

Since 2r is the eigenvalue of the oscillator Hamiltonian
2R, the discussion of Ref. 6, sketched also in Sec. 1V, indi-
cates that the minimum value of 2ris /1,5 + A,3 + 55 In this
case we could write

r+2,...

t=A+o0, o=h;3+hus+hs), A=012,.. (3.6)
and the eigenvalue E, of T? takes the form
E,=tt—1)=0(c—1)+ Qo— DDA+ A~ 3.7

For a harmonic oscillator shell model'? for particles sat-
isfying Fermi statistics the o is large even for a small number
of particles, e.g., for 4 = 16, 0 = 12 and for 4 = 20, o = 20.
Thus the variation of energy with A is given mainly by the
linear term (20 — 1) A, i.e., we have a vibrational spectrum.

B. The case u(3) D o(3)

The generators in the case u(3) Do(3) arethe R, L,
of (2.1c) and (2.1d), where the latter are those of 0(3). As
indicated in (3.2a), the Casimir operator of o(3) is
L?=}L,L;, while from (2.1) and (2.29) the linear and
quadratic Casimir operators of u(3) are given by'*

Hy=C,=2R, T=C,C, (3.8)
where
Cij = %(ﬂisgjs + é‘jsﬂis)' (3'9)

The quadrupole—quadrupole interaction is defined by
the operator'*

Q= —4R . R. =

sRi= —T+HG +1L? (3.10)
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where the rhs is obtained with the help of (2.29), (3.8), and
(3.9).

To determine the eigenvalues of Q 2 we first note that the
basis for the irreps in the positive discrete series of the chain
sp(6,R) Du(3) Do(3) can be expressed by the ket

|[h13 h23 hy;18(k Kk, k3)QIm),

where [A,5 h,3 hy;], (ky, Ky, k3), I, m are, respectively, the
irreps of sp(6,R), u(3),0(3),0(2). Here S and () are multi-
plicity indices which distinguish between repeated irreps of
u(3) in a given irrep of sp(6,R ) and between repeated irreps
of 0(3) in a given irrep of u(3). These states have been dis-
cussed by Rowe and Rosensteel.'?

The operators Hy, I', L 2 are then clearly diagonal in the
basis of states (3.11) and thus their eigenvalues are well
known.'"* The spectrum of energy levels associated with
the quadrupole—quadrupole interaction (3.10), first ob-
tained by Elliott,'! then takes the form'"'*

Ek|k2k3-[ = - [k% +k§ +k§ +2(kl _k3)]
+itk + k+ k)2 + U+ 1), (3.12)

giving rise to rotational bands, each of which is characterized
by the irrep (k, k, k3) of u(3).

The angular momentum content in each rotational band
is related with the irreps / of 0(3) in a given irrep (k, k, k)
of u(3) and is well known." The irreps (k; &, k5) of u(3),
presentina given irrep [h,3 A,5 b33 ] of sp(6,R) has also been
fully investigated.'>'%!” Thus when [ 4, A, h;5] is specified,
all possible rotational bands (&, k, k;) and corresponding
angular momenta / are known.

(3.11)

C. The case cm(3)

There remains only the case cm(3) to complete our dis-
cussion of the maximal subalgebras of sp(6,R), i.e., the cases
of “pure” Hamiltonians.

The Casimir operators of cm(3) are of the third and
fourth degree in the generators'® and we could try to discuss
their spectra in an analytic fashion, as we have done for
sp(2,R) @ 0(3). Unfortunately, cm(3) does not contain
among its operators the 2R of (3.17), i.e., the harmonic os-
cillator Hamiltonian, nor

2R+ M) =4pupss (3.13)

the kinetic energy of the many-particle system in three di-
mensions.

Any realistic Hamiltonian involving the Casimir opera-
tors of cm(3) must also include either 2R or 2(R + M); thus
it will automatically fall in the category of a “transitional”
Hamiltonian, for which only a numerical analysis is feasible.
We shall discuss this type of computation in Sec. I'V.

D. Shape operators

We turn now our attention to the problem of shape. The
eigenvalues of the shape operators are the principal values'®
of the quadrupole matrix

q = “qu“ = ”xisxjx “ = 2”le

— M), (3.14)

i.e., its diagonal components in the frame of reference fixed
in the body, given by the secular equation
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det||A8; —g;|l =0, ij=1.23. (3.15)

Equation (3.15) leads to a cubic equation in A, which gives
rise to three real and positive eigenvalues designated
Ar = pi, k =1,2,3. Theroots p, are then related to the three
principal axes of an ellipsoid'® and thus give a measure of the
shape.

Since rather than shape we are concerned with the de-
formation of the many-body system away from sphericity, it
is convenient to express p, k = 1,2,3 in terms of three new
parameters p, b, ¢ through the relation

pi = (p/3){1 +2bcos[c— (2mk /3)]}, k=123,
(3.16)

wherenow b2, b3 cos 3c provide a measure of deviation from
the spherical shape, as for b =0, p3 = (p?/3), k=1,2,3.

Through the standard method of solving cubic equa-
tions with the help of trigonometric functions,?® we immedi-
ately find that

pr=trq, (3.17a)

b2 =3[(tr q*)/(tr q)?}, (3.17b)

b3 cos 3¢ = Z[det q/(tr q)°], (3.17¢)
where q is the traceless part of the matrix q, i.e.,

q=llg; —§tr adyl. (3.18)

A measure of the deformation of an eigenstate of a Ham-
iltonian is given by the expectation values of the operators 4 2,
b7 cos 3¢ with respect to these eigenstates. Since powers of
p* = tr q appears in the denominator, they are cumbersome
to evaluate; thus we prefer to define deformation as the fol-
lowing ratio of expectation values:

(b?) =3[(tr @*)/((tr q)*)], (3.19a)
(b*cos 3c) = Y[ (det q*)/((tr q)*)], (3.19b)

where the angular brackets represent expectation values of
the operators indicated with respect to the eigenstates of the
Hamiltonians under study.

In Sec. IV we shall evaluate the deformation parameters
(3.19) for some specific many-body systems.

1V. SPECTRA AND SHAPES OF “TRANSITIONAL”
SYSTEMS

In Sec. I we discussed the spectra of Hamiltonians
associated with the three maximal subalgebras and the oper-
ator whose expectation value with respect to the correspond-
ing eigenstates gives their shape. We now want to see how the
spectra and shapes change when we go in a continuous fash-
ion from one to another of the maximal subalgebras, i.e., the
case of “transitional” systems.

We will be concerned with a set of 4 particles, but, as
mentioned at the beginning of Sec. II, we eliminate the cen-
ter of mass motion. Thus our x,, p,, =123
s=12,..,n =A — 1are Jacobi relative coordinates and mo-
menta. Our many-body systems will be characterized by
(A, [h,5 hys hy3]), where the square brackets correspond to
the irrep of sp(6,R).

By definition, a “transitional” Hamiltonian cannot be
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diagonal in any of the bases associated with a maximal subal-
gebra: Thus we would have to determine its matrix represen-
tation with respect to one definite basis and diagonalize this
matrix numerically. Unfortunately, neither (3.5) nor
(3.11), associated with sp(2,R) ® 0(3) or u(3), provides an
orthonormal basis since they still have multiplicity indices.
Furthermore, the matrix representation of the generators
with respect to these bases is rather complex and in fact has
to be determined through computer programs. Thus in the
following analysis we decided to use what we call the “mono-
mial basis” of Ref. 6 and whose main characteristics we
briefly review.

A. Monomial basis states for irreps of sp(6,A) in the
positive discrete series and matrix representation with
respect to them of generators, Hamiltonians, and shape
operators

In terms of the creation and annihilation operators
(2.29) the realization of the generators of sp(6,R) is'®

BI} = 77is77js’ (4-13-)
Cy =30 + 85sMis)> (4.1b)
B, =§i:§js, (4.1¢)

where, as before, the repeated indices s are summed from 1-»
and i, j over the values 1, 2, 3. The C, are the generators of
the u(3) subalgebra of sp(6,R).
The full monomial basis associated with the irrep [4,;
h,3 hy;] in the positive discrete of sp(6,R) has the form
3

Inghyy = [ (BI)"|hy), (4.2)
i<j=1
where the n; are non-negative integers and
h13 h23 h33
|h;) = hy, hy, 4.3)

h 11
is a Gelfand state, with the labels satisfying the inequal-
ities h;>h;; _2h; .

While the basis (4.2) has a very simple analytic form, it
is clearly nonorthonormal; besides, it does not correspond to
an eigenstate of the total angular momentum L ? = {L;L;,
where L; = C; — C;;. However, the basis (4.2) can be made
to have a definite projection in direction 3 of the angular
momentum, i.e., to be an eigenstate of L,,. Furthermore,
|n;,h;) is also an eigenstate of the operator 2R = C;;, with
the eigenvalue

14,21

3
2 Y n;+ (A + by + b33 ) =2(H" 4 0),

iG=1

(4.4)

where o is given by (3.6) and, for brevity, we will refer to
A" =32} _n; as the number of quanta.

An arbitrary generator X of the sp(6,R) Lie algebra,
when acting on the state (4.2), gives a linear combination of
these states, i.e.,

X(ngh;) = Z (ng.h ;) (nph G| X [ng,hg).

Tt
n,-,-h‘-j

(4.5)

The last term in (4.5) is not a matrix element, but a numeri-
cal coefficient, a fact we emphasize by using a round instead
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of an angular bracket on its lhs. Note that we stay within one
representation of sp(6,R),i.e, Ay =hs,i=1,2,3.

All the coefficients (7}, ;| X |n;,h;) that correspond
to the set of generators {X} of sp(6,R) in (4.1) were given in
explicit and closed form in Ref. 6.

We now turn to Hamiltonians H in the enveloping alge-
bra of sp(6,R), i.e., polynomial functions of the generators
(2.1) or (4.1) which are Hermitian and invariant under ro-
tations and time reflections.*® If we apply H to the states
(4.2) we again obtain a linear combination of these states,

ie.,

Hlnyhy) = Z [ngsh ) (nh | H |y by

TR
n,-j.h,j

(4.6)

The coefficients on the rhs of (4.6) can be obtained im-
mediately since we know the corresponding coefficients for
B1,,C., By, k1= 1,2,3 givenin Ref. 6. Although the basis
|n;,h;) is not orthonormal, it was shown in Ref. 6 that eigen-
values of H, i.e., the energy levels E, are given by the secular
equation

3
et h iH myhy) = E T1 8080l =0 (57

The matrix appearing in (4.7) is in general of infinite
dimension, in which case we must, for calculation purposes,
introduce a cutoff procedure for the n;;, n;;. One possibility is
to require that £, ;n,<.#", where .4 is a convenient upper
bound for the sum indicated.

There are some cases in which the matrix (4.7) breaks
into finite blocks, as happens, for example, for the Hamilto-
nians associated with the maximal subalgebras
sp(2,R) @ 0(3) and u(3), both of which commute with
2R = C,;. From (4.4) we then see that we have finite blocks
associated with each value of 4.

Finally, we consider the shape operators (3.17) asso-
ciated with the matrix ¢; = x,.x;, which, from (2.29), canbe
written as

g; =3B} + C; + C; + By). (4.8)

The application of the operators in (3.17), i.e., (trq)?
(tr g)°, tr g det q, designated generically by &, to the
states |n;,h; ) again gives linear combinations of these states,
with the coefficients

(nj,h |0\ ng,hy), (4.9)

which can be determined with the help of the coefficients in
(4.5) for the generators of sp(6,R).

With the help of (4.9) it is straightforward to determine
the expectation value of the operators & with respect to the
eigenstates of the Hamiltonian H: The latter are linear com-
binations of the |n;,4; ), with the coefficients determined by
the secular equation (4.7).

We have thus outlined the procedure we follow to obtain
the spectra and shape for ‘““transitional” cases. We proceed to
illustrate the analysis in specific examples. A more complete
discussion of this program will be presented elsewhere.
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B. Transitional Hamiltonians involving the subalgebras
sp(2A) ®0o(3) and u(3)

We shall consider the Hamiltonian
H=(1-x)T*+xQ? (4.10)

where x is a real parameter in the interval 0<x<1 and T2,
defined in (3.2b), is the Casimir operator of the sp(2,R)
algebra, while Q2 of (3.10) is the quadrupole—quadrupole
interaction associated with su(3).

For x=0 or 1 the spectrum of H for a system
(A4,[ 7,5 hy; h33]) is given by (3.7) or (3.12), while for x in
the open interval 0 < x < 1 it has to be evaluated numerically
through procedures such as the one outlined in Sec. IV A.
These procedures also provide the eigenstates, whose angu-
lar momenta can be determined by applying to them the
operator L 2.

Wenote that H of (4.10) commutes with H,=C,, = 2R
and thus the ./ of (4.4) is a good quantum number for any
x. For x = 0 the energy levels are characterized by the A of
(3.7); thus we require the values of this quantum number
which are compatible with .#". As discussed in Refs. 1 and 3
the total number of quanta of the state (4.2) that, as indicat-
ed in (4.4), is given by 2(#" + o), characterizes the one-
row irrep of the Lie algebra u(3n). On the other hand, the
one-row irrep of the subalgebra 0(3n), related to that' of
sp(2,R), is given by the 2(A + o) of (3.6). Because of the
well-known® relations between the single-row irreps of
u(3n) and o(3n) we conclude that A=, 4 —1,
A =2,..,0. If 4/ €0 we have from E, of (3.7) that the
levelsof H forx = 0, when A = 0,1,...,./, are almost equally
spaced.

We shall discuss only the example (20, [12, 4, 4]) with
A = 1, although the conclusions we derive hold, also, for
other cases (A4,{ 4,5 h,5 h;3]) we have analyzed. In Fig. 2 we

i (b)
50 TA=1 J\r:1

2
10

10 X

0 05

FIG. 2. Spectra of the open shell system (20, {12,4,4]) for the Hamiltonian
(4.10) and one quantum of excitation .#” = 1. The A, (4,1), and ! denote,
respectively, the irreps of sp(2,R ), su(3), and o(3). The energy is given in
dimensionless units. The values at x = 0 and x = 1 correspond to the vibra-
tional or rotational limits.
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show the spectra as a function of x, where we renormalized
the ground state energy to zero, i.e., a straight line along the
abscissa. At x = O (the vibrational limit) the values A = 0,1
characterize the irrep of sp(2,R). At x = 1 (the rotational
limit), (Ax) in vertical parentheses give the irrep of su(3),
where A = k, — ky,u = k, — k, for the (k, k, k;) appearing
in (3.12). In the column below each (Ax) we give the angu-
lar momentum of the state.

Note that the low lying collective states correspond to
A = 0, as our example is related more to the giant isoscaiar
resonances in *’Ne. However, our main point in Fig. 2 is to
illustrate the change of spectra when going from the
sp(2,R) @ 0(3) to the u(3) maximal subalgebra.

From the procedure outlined at the end of Sec. IV A we
can also calculate the shape of the eigenstates associated
with definite eigenvalues of H. For example, for the lowest
[ = O state, the expectation value (b *) of (3.19a) is 0.105 at
x = 0and 0.120 at x = 1, a change of only about 10%:; this
holds for all the examples (A4,[4,5 hy; h33]) we have dis-
cussed when H has the form (4.10). - -

We thus conclude that while there is a considerable -

change in the spectra when we go from the vibrational
(x = 0) to the rotational (x = 1) limit, the deformation of
the eigenstates of H does not change very much. In this re-
spect the conclusions are similar to those obtained in Ref. 5,
where the case of two space dimensions was considered.

C. Hamiltonian involving the subalgebras cm(3) and u(1)

The cm(3) algebra provides us with the interacting
term

tr g%, (4.11)
with g given by (3.18), which corresponds to the full phys-
ical quadrupole interaction. The term (4.11) cannot be con-
sidered as a Hamiltonian by itself since we must add to it the
kinetic energy contained in 2R. The operator R, defined in
(2.1c) and (2.4a), is the generator of a u(1) subalgebra.
Together with the powers and products of the generators of
cm(3), R indicates that our Hamiltonian is of the transition-
al type and could be written as>

H= M(ZR) + Vcoll!
Vo =€ p*b% + ¢, pb > cos 3¢ + ¢3 p*b*.

(4.12a)
(4.12b)

The variables b2, b7 cos 3¢, and p? are related to tr q, tr g7,
and det q through Eqgs. (3.17). The coefficient #iw is intro-
duced to specify the frequency of the oscillator and ¢}, ¢, ¢;
are model parameters.

The V., of (4.12b) is of the type used by Rowe?® and is
related to the potential used in the geometrical model intro-
duced by Hess et al.”* In Ref. 23 and the references given
therein many calculations were performed. Therefore, we do
not need to repeat these calculations, but rather summarize
some of the results that are in structure similar to those ob-
tained in Ref. 5.

The H of (4.12) can be interpreted as a vibrational or
rotational Hamiltonian depending on the parameters c,, ¢,,
c;. If, for example, ¢, = ¢; = 0, V_,, as a function of 5 is a
parabola with a minimum at b = 0. The spectra of H will
then be vibrational, with small deformations for the eigen-
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states.>*> On the other hand, if ¢,, ¢; #0, we can have a situa-
tion in which ¥V, as a function of 52 has a minimum quite
far away from b = 0, in which case the H of (4.12) has a
rotational spectrum with very strong deformations for the
eigenstates.>*?

The statements of the previous paragraph are corrobo-
rated by calculations using the techniques of Sec. IV A or
other methods.'? Furthermore, the statements also agree
with our results for the corresponding problem in two-di-
mensional space.’

In Sec. V we present the conclusions that follow from
the present series of papers.

V. CONCLUSION

_As mentioned in the Introduction to this series of pa-
pers,' we wished to discuss the relation between collective
behavior in many-body systems and geometrical concepts.
Specifically, we intended to reexamine the microscopic de-
scription of nuclear collective motions and their relation
with the symplectic geometry of the 4-nucleon system.

We were certainly not the only ones interested in this
type of program, so we shall briefly review the work of other
groups in this field and then indicate the nature of our specif-
ic contributions and the conclusions that follow.

As is well known, collective coordinates were first intro-
duced in nuclei in the 1930’s through the liquid drop model
of Bohr?*; in the early 1950’s Bohr and Mottelson?’ had al-
ready correlated them with the many-body mass quadrupole
matrix q = ||q;|| of (3.8).

Since the q; = x;x; — (4) (X4X4; )8, is summed over
the particle indices or, more correctly, over the
s=1,2,..,n = A4 — 1 Jacobi coordinates, as from the begin-
ning we eliminate the center of mass motion, the quadrupole
matrix is an invariant of o(n). This fact made it possible, in
the early 1970’s, for groups led by Filippov®® and Vanagas?’
to express the 3n coordinates x,, i = 1,2,3; s=1,2,...,n in
terms of three deformation parameters (the p, of Sec. IV),
three Euler angles 4, , k = 1,2,3 that take us from the frame
of reference fixed in space to the one fixed in the body, and
3n — 6 remaining variables.

Only the first six parameters, i.e., p;, ¥, k=123
played a role in collective excitations since the states were
associated with a definite irrep of o(n) fixed by shell model
considerations.

By the mid-1970’s Rosensteel and Rowe'? and Bieden-
harn et al.'® initiated an approach to the problem by first
identifying the desired collective motions and then deter-
mining the operators that generate these motions, as well as
the Lie algebra they satisfy, which turned out to be sp(6,R).

At first glance it seemed that work on a microscopic
description of collective motions in the Soviet Union2%” and
North America'>'® were not related since the first was based
on the o(n) Lie algebra, while the second used sp(6,R).
However, both dealt with a problem of 3n degrees of freedom
associated with the metaplectic representation of the Lie al-
gebra sp(6m,R), which contains among its subalgebras
sp(6,R) @ o(n). In this case the irreps of sp(6,R) and o(n)
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are related, i.e., “complementary,” as was shown by Mo-
shinsky and Quesne?® in the early 1970’s. Thus the two ap-
proaches were equivalent, as was soon realized by all con-
cerned.

Thus one arrived at what is now known as the symplec-
tic model of the nucleus based on sp(6,R), which besides the
groups mentioned was also analyzed by Deenen and
Quesne,? Kramer et al.,*® and the present authors and their
collaborators."®

The work of all these groups mainly stressed the chain
sp(6,R) Du(3) Do(3), which leads to spectra with rota-
tional bands and where one expects to have strongly de-
formed nuclei. However, the Bohr and Mottelson model and
the interacting boson approximation also give the possibility
of vibrational bands; thus the question arose as to whether in
the symplectic model there was another chain of subalgebras
which could bring out this type of spectra.

It was shown by Moshinsky' that such a chain could be
sp(6,R) Dsp(2,R) ® 0(3) and thus it merited as careful an
analysis as had been lavished on sp(6,R) Du(3) Do(3).

The present series of papers then began with the purpose
of obtaining the basis states for irreps in the positive discrete
series of the chain sp(6,R) Dsp(2,R) @ 0(3), as well as the
matrix elements of the generators with respect to them. We
quickly realized that the problem was difficult and thus we
first looked at the case when the dimensionality of the space
was d=2 rather than d=3, ie., at the chain
sp(4,R) Dsp(2,R) ®0(2).> We then considered the case
d = 3 for closed shells, i.e., the irrep [4 A A] of sp(6,R), as
well as the general case, to obtain the branching rules and the
basis states in terms of elementary permissible diagrams.*

At this stage we realized that the problem had to be
looked at in a more general context if we were going to un-
derstand its structure. The following questions arose for
sp(2d,R) in general, although our interest was centered only
ond=3or?2.

(i) What are the maximal subalgebras of sp(2d,R)
which contain 0(d)?

(ii) What are the chains of maximal subalgebras of
sp(2d,R) which are more convenient for labeling the states
and determining the matrix elements of the generators with
respect to them?

(iii) What type of Hamiltonians (particularly those of
second degree in the generators) can be associated with the
Casimir operators of the maximal subalgebras and what is
the nature of their spectra?

(iv) Can one introduce operators whose expectation
values characterize the shape of an n-body system in a d-
dimensional space and are these operators in the enveloping
algebra of sp(2d,R)?

(v) If a given chain of subalgebras gives, through its
Casimir operators, a Hamiltonian whose spectrum is rota-
tional, does this imply a large deformation? Conversely, if
the spectrum is vibrational, does this imply small deforma-
tions?

In Ref. 5 we answered questions (i)—(v) for d = 2; we
refer the reader to this paper for the detailed response. In the
present paper we answer the questions for the case d = 3 and
proceed to summarize our responses using the correspond-
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ing labels (i)—(v).

(i) The maximal subalgebras of sp(6,R) “modulo” lin-
ear canonical transformations are sp(2,R) @ 0(3), u(3),
and cm(3), as discussed in Sec. I1.

(ii) None of the maximal subalgebras gives a convenient
basis for determining the matrix representation of the gener-
ators of sp(6,R), so we preferred the nonorthonormal mon-
omial basis (4.2), for which explicit analytic expressions for
the matrix representations were derived in Ref. 6.

(iii) Hamiltonians of second degree in the generators of
sp(6,R) can be associated with the Casimir operators of the
maximal subalgebras sp(2,R) # 0(3) and u(3), giving, re-
spectively, vibrational and rotational spectra, as discussed in
Sec. ITL

(iv) One can introduce operators whose expectation
values characterize the shape, i.e., the deformation away
from sphericity, of eigenstates associated with definite Ham-
iltonians. These shape operators are in the enveloping alge-
bra of the maximal subalgebra cm(3), as shown in Sec. III;
their expectation values can be obtained with the help of the
techniques outlined in Sec. II.

(v) The u(3) maximal subalgebra gives rise to rota-
tional spectra through a Casimir operator which commutes
with 2R of (3.3), i.e., the harmonic oscillator Hamiltonian.
Thus as we go to higher excitations of quanta, i.e.,
A7 =0,1,2,3,..., we will not be obtaining the low lying spec-
tra, but the spectrum associated with giant quadrupole and
monopole resonances. This also occurs for the
sp(2,R) ® 0(3) maximal subalgebra whose Casimir opera-
tor also commutes with 2R, but gives rise to vibrational spec-
tra. The interesting point is that at least for the levels in the
high excitation region of monopole and quadrupole giant
resonances, the deformation in the sp(2,R) @ 0(3) and u(3)
limits have almost the same values. Thus the type of spectra
(vibrational or rotational) is not necessarily correlated with
the type of deformation (small or large).

On the other hand, if we add to 2R terms of higher than
second degree in the generators of cm(3) that are Hermitian
and invariant under rotations and time reflections, we obtain
a Hamiltonian which mixes strongly the energy levels with
different numbers of quanta .#" and modifies the low lying
energy levels of nuclei, giving rotational bands for open shell
nuclei accompanied by strong deformations. Thus we come
to the conclusion that while rotational bands can be genera-
ted both by the u(3) and cm(3) maximal subalgebras, only
the latter, at least in the symplectic nuclear model, seem to be
accompanied by an arbitrary strong deformation.
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APPENDIX: MAXIMAL SUBALGEBRAS OF sp{(2d,A)
In Sec. II we proved that the set of generators
(L;,R.M,N) (A1)

is a maximal subalgebra of the sp(2d,R) Lie algebra. In this
Appendix we present a derivation of the two other distinct
sets of generators that are also, for any d, maximal subalge-
bras of sp(2d,R) containing the o(d) generators; we also
discuss the additional possibilities that occur in the excep-
tional case d = 2. As shown in Sec. I, these subalgebras can
be obtained by consideration of commutators among the
various operators in the scheme

<L._. aM; +BN; + 7Ry a'M; +B'N; + VR,-,->
i

aM + bN + cR aM+b'N+cR
(A2)
To begin, we have
[aM; +BN; + ¥R;;, aM,; + BN, + ¥R;; ]
= (i/16) (V" — B> — a®)(Ly 8 + L;:6;
+ L;6; + L;:6;), (A3)

so that depending on (3> — 8?2 — &) being larger, equal, or
smaller than zero we have different types of subalgebras. As
seen in (2.22), there are three canonical forms for the opera-
tor aM; +BN; + yR; determined by the value of
(9% — B? — a*). Weproceed to discuss each of the cases sep-
arately, replacing in (A2) the operatoraM; + BN, + yR;
by its corresponding canonical form.

Case (i) (y’—B °—a?) > 0. In case (i) the scheme (A2)
becomes, without loss of generality,

<L.» R; - aM; +B8'N;

” aM 4+ bN+cR aM+b'N+c'R

However, by means of a canonical transformation of the type
(2.17a), which leaves R; invariant, we can replace
a'M; + B'N,; by either M; or N;; alone; since the two possi-
bilities lead to equivalent subalgebras we choose M; and
assert that still, without losing generality, the scheme (A2)
becomes

< ' R; M,
7 aM 4+ bN+cR aM4+b'N+cR

>. (A4)

>. (A5)

Consider now, for /54j, the commutator
[Ry;M;] =i( — 1/d)N,,. (A6)
Let us suppose for the present that d>3. If (A5) is going to

close under commutation, then from (A6) we conclude that
it must be independent of M;;. Next, the commutators

[R,.aM + bN + cR | = i(aN; — bM,;), ‘(A7a)

[R;, @M+ b'N+cR]=i(aN; —b'M;) (ATb)
imply thata = b =a' = b’ = 0if (AS) is going to close un-
der commutation. In this way we have demonstrated that
when d>3, (AS) is a maximal subalgebra of sp(2d,R) if it
consists only of the elements

(L;R;,R).

When d = 2, the set (A8) is still a maximal subalgebra.

However, ifd = 2, then (A6) does not preclude the presence
of M,;; keeping M, then (A7a) and (A7b) tell us only that

i i
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(A8)

a = a' = 0if we want to have an algebra, while from
[M;,bN +cR ]| = —i(bR; +cN;), (A9a)
[M;,b'N+cR]= —i(b'R; +c'N;) (A9b)

we deduce that (AS) can close under commutation if
¢ = ¢’ = 0. Finally, from (2.9) with d = 2, we have

[R;M,; | = (i/4) (8,68, + 8,8, —86,8,)N.  (A10)

7
Thus we conclude that sp(4,R) has the maximal subalgebra

i

A

i

(L,R;,M;,N). (Alla)
Of course, it also has the maximal subalgebra
(L12’Rij9Nij’M> (Allb)

related to (Alla) by a canonical transformation of the type
(2.17a). Both (Alla) and (A11b) are realizations of the
0(3,1) Lie algebra.

Case (ii) (y’— 3 °—a?) < 0. In case (ii) the scheme (A2)
becomes

<L..- N, . M +7R,

” aM+bN+cR adM+b'N+cR
By means of a canonical transformation of the type (2.17b)
that leaves N; invariant, it is possible to replace the operator
a'M; + ¥R, in (A12) by a standard form whose expres-
sion is determined by the relative values of a’ and ¢/, as we
proceed to discuss.

If ¥? > a'* the standard form is R,;; then by a rotation of
type (2.17a) we can replace N; in (A12) by M;;, thereby
leaving (A12) exactly as in (AS5) and thus giving no new
results.

If ¥’ < &' the standard form is M; and therefore (A12)
becomes

>. (A12)

N; M;
PR HE , .- (Al13)
aM +bN+cR aM-+b'N+ 'R
Now,
[N;.M; ]

1
= z[—i—(R,.,jo‘,.,. +R;6; + Rz 6; +R;6,)
1 1

-7 R;6; — 7 R;;5;
11l 6.6, + 26,8, ——5,6,|R (Al4
g O g Svor =gz ndu [RALD

and the first curly bracket vanishes identically for d = 2, but
not for d>3. We thus conclude that the set (A13) lead to no
subalgebra when d>3, while (A14) supplemented with
(A9a), (A9b), and

[Ny.aM + bN + cR ] =i(aR; + M), (Al5a)
[Nj@'M+b'N+c'R]=i(@R; + M) (A15b)
permit us to deduce that, whend = 2, (A13) gives a subalge-
braifa=b=a =b'=0, i.e., sp(4,R) has the maximal
subalgebra
(L;N;,M;,R ),

which is a realization of the Lie
sp'(2,R) &sp” (2,R). '
Finally, if ¢ = +a' the

(Al6)

algebra

iy

standard forms of
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a'M; + YR, are R; + M; and R; — M;;, which are given
in (2.21) in terms of coordinates and momenta and were
shown, in the text following (2.21), to be related to each
other by a linear canonical transformation which only
changes the sign of N;. Consequently, without losing gener-
ality, we can now replace (A12) by

< N; R, —M;

i

; v > (A17)
aM+bN+cR aM4+b'N+c'R

Then the commutators (A15a) and (A15b) allow us to de-
duce that c= —a, ¢’ = —a’ if (A17) is going to give an
algebra, so effectively we can replace the two linear combina-
tions of the scalar operators in (A17) by Nand (R — M). It
is then found that all other commutators between the opera-
tors in (A17) give linear combinations of the operators al-
ready appearing. Hence the third maximal subalgebra of

sp(24,R) that we obtain is
(LypNy,N,R; — MR — M). (A18)

Case (iii) (y*—B *—a?)=0. The scheme (A2) now be-
comes, according to (2.22),

< . R, — M, ; 5(M, +R;) +eN,.j>. (A19)
P aM+bN+cR adM+b'N+cR
Consider first, for /7, the commutator
[R; — M, 56(R; +M,) + €N, ]

1 1 1

=—46L; 2'5(———)N,~
4 7 +e 2 d)’
+ ie(% - %)(R,f ~M,). (A20)

If (A19) is going to close under commutation, then the fact
that no term (R; + M;;) appears on the rhs of (A20) im-
plies that necessarily § = 0. However, then we see that by
setting § =0 in (A19) this scheme becomes identical to
(A17); thus we eventually obtain in case (iii) the same max-
imal subalgebra (A 18) which was obtained for case (ii). Of
course, this conclusion remains valid as long as d>3, since
ford = 2 (A20) does not preclude the presence of R; + M,;,.

Restricting ourselves now to d = 2 and setting = 1 in
(A19), the commutator

[R; — M,,aM + bN + cR |

=ib(R; — M) +i(a+ c)N; (A21)
imposes c = — aif (A19) is going to close under commuta-
tion, while
[R; + M, +€eN;,aM + bN —aR |

=i2aN; — ib(R; + M;)) + iea(R; —M;)  (A22)
requires, for the same purpose, b = — 2a/€. The scheme
(A19) thus becomes

(LIZ’(Rij - M”)’(RU + MU + é-Nij)y

[R—M+ (2/€)N]). (A23)
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Equation (A23) is another maximal subalgebra of sp(4,R)
since we have, when d = 2,

[R; — MRy +M;; + €Ny ]
= YikL,, + 1ie (8,8, + 8,5,
—8,8,,)[R— M+ (2/€)N], (A24)

with « = 1, 0, or — 1 depending on the values of the four
indices.
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The integral theorem for supersymmetric invariants

F. Constantinescu and H. F. de Groote

Fachbereich Mathematik, Johann Wolfgang Goethe Universitit, 6000 Frankfurt am Main, West Germany

(Received 7 September 1988; accepted for publication 14 December 1988)

A supersymmetric integral theorem that extends results of Parisi, Sourlas, Efetov, Wegner, and
others is rigorously proved. In particular, arbitrary generators are allowed in the integrand
(instead of canonical ones) and the invariance condition is very much relaxed. The connection
with Cauchy’s integral formula is made transparent. In passing, the unitary Lie supergroup is
studied by using elementary methods. Applications in the theory of disordered systems are

discussed.

I. INTRODUCTION

Supersymmetry provides a useful computational frame-
work in several areas of physics. Besides field theory and
gravitation, applications in condensed matter and nuclear
physics, as well as in stochastic differential equations, are
well known. One of the particularities of superanalysis is the
existence of integral theorems first applied by Parisi and
Sourlas to dimensional reduction.' Roughly speaking, this
says that

J.F(V)deF(O), (1.1)

where V= (x,0,,0,) and F is supersymmetric with zero
boundary condition at infinity. Here xeR?, d>>1, and ®,, ©®,
are canonical generators of a Grassmann algebra. The inte-
gration in (1.1) is taken in Berezin’s sense. The function Fis
invariant with respect to “superrotations,” i.e., transforma-
tions that preserve the sum x> + @, ®,. Several extensions of
(1.1) exist. The result (1.1) has no counterparts in classical
analysis or invariant theory.

Another result, which goes back to Efetov’ and
Wegner’® (see also Ref. 4), says that

f F(Q)dQ = F(0), (1.2)

where @ = (§ ), a,beR, is a 2 X2 supermatrix and Fis an
invariant function, [i.e.,, F(Q) = F(S ~'QS), S superuni-
tary] with zero boundary conditions at infinity. Again, the
integration in (1.2) is taken in the sense of Berezin (for pre-
cise definitions see Sec. II). Recently Wegner has proved a
more general result that contains (1.1) and (1.2) as particu-
lar cases.?

In this paper, we extend the results above in several di-
rections. In particular we allow as integration variables arbi-
trary generators instead of canonical ones, and make conse-
quent use of Berezin’s integration theory.’

On the other hand, we weaken the invariance condition
on F from a classical Lie supergroup to a discrete group
isomorphic to Z". Our proofs are rigorous. We use a nice idea
of Wegner and the complex z,z formalism introduced in Ref.
4 in order to perform induction and to deal with the matrix
case. The main result is given in Theorem 4.1. The ideas of
the proof develop gradually from Sec. III to Sec. IV. Section
II contains preparatory material that was adapted to our
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needs. In Sec. V we study by elementary methods the unitary
supergroups. No use of the corresponding Lie-superalgebras
is necessary. Section VI contains interesting additional ma-
terial.

We want to stress that our proof reveals, in particular,
the intimate connection of the supersymmetric integral for-
mulas with Cauchy’s integral formula of complex analysis.
The matrix case of the present supersymmetric integral
theorem should play an important role in the rigorous study
of the extended state region of the Anderson problem in the
n-orbital model.>? For details see the discussion in Ref. 4.
We also expect applications to other areas of condensed mat-
ter physics.

Il. FUNCTIONS ON SUPERSPACE AND SUPERSPACE
INTEGRATION

In this section we follow Ref. 5 and specialize to our
needs. Let A, be acomplex Grassmann algebra with canoni-
cal generators £,,...,5,. Let A, , be the algebra with elements

f=fxH=Y 3

k>0 i< - <i

f;.-»»ik(x)gi,'”gik’ (2.1)

where xeR? and f; .., are complex-valued infinitely differ-
entiable functions of x. Let x,,...,x, be the usual coordinate
functions on R”. Then x,,...,x,,, £ ,...,§, are canonical genera-
torsof A, .

Let us denote by £, the zero order (¥ = 0) termin (2.1).
The body m( f) of fis defined by

m( f)(x) =f(x,0) = fo(x). (2.2)

If f,,....f. are real or complex-valued functions then the
range of (m( f}),...,m( f,))} is denoted by Spec( f,..., f.).

Now we recall the general concept of functions depend-
ing on commutative and noncommutative variables.” Let
= (@psPm)s ¥={¥,..¥,), where @,..p, and
¥y, are even and odd elements in A, respectively. If
g =g(x,,...,x,,) is a complex-valued function on R", the su-
perposition g(g,,....p,, ) is defined as follows: separate in @,
the term of zero degree

@:(x,€) = a;(x) + h;(x,£),deg h,>2
and define g(¢,,...,@,, ) by a formal Taylor series expansion:
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g(@ 0P
h{\w...hﬁ;n
=g(a.-a,) + ——
g(a, ) 2;)0 PRI
a/\-,+~--+k,,,
gla,....a,) (2.3)

k
aallﬂ. . .aa m

m

(notice that the 4,’s are nilpotent, so the sum on the right-
hand side is finite). Now if F = F( y,n)eA,, ,

Fiym=3Y Y F...(»)Nn n, (2.4)
k>0 i < - <y
we can define F(g,¥)eA,, , by
Fe) =Y 3 Fo (@)Y, (2.5)

k30 i< <ip

Here, F(@,¥0) = F(@,yeees@ ns¥15-- ¥, ) 18 a function of even
and odd elements in A, , with valuesin A, ;. Formally it has
to be understood as a function in the usual sense depending
on commutative and noncommutative variables.

Lety,(x,£),i=1,..,p,beevenand7; ,j = 1,...,q,be odd
elements of A, ;. The set {yies yp,n,,...,nq} is called a sys-
tem of generators for A, if (i) Spec ( yy,..., y,) = R?, (ii)
every element feA , | can be written by means of y;,7; in the
form

=3 Y oy Do y)n, 0,

Kk <<

(2.6)

Now we define Berezin’s integral and formulate the main
theorem concerning the change of (superspace) variables.
Letx ,»,§j be a system of generatorsin A, , (not necessar-
ily the canonical ones!). Then we can write x; = x,(s,§),
where seR?. Let t; = x, (5,0)eR”.
Definition 2.1: Let feA,,. We set

ff(xé)dx,g = f f(t,E)dt dE.

The integral w.r.t. dt (dt = I17_, dt;) is understood in the

usual sense whereas df = I17_, d{; indicates integration

w.r.t. the anticommuting §; defined by

(2.7)

fdé‘j:O, fg, dé; =1 (2.8)
and

fabdgjzafbdgj (2.9)
if

9 a=0.

9¢;
From this definition it follows that for fA ,, we have

J‘f(x,g)dx'g = ffl..,q (t1ye0ty)dly,.0dE,. (2.10)

In classical analysis it is convenient to assume that the
differentials anticommute among themselves but commute
with the vdriables. In sﬁperanalysi§ we extend this property
by assuming that the dx; are anticommuting but commute
with x;,£;,dé;, which commute among themselves, i.e., be-
sides known relations we have
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[d8::6;] = [d¢:.dE; ] = [dx;»dE; ]
= [d&x;] =1{dx,£} =0
({---} denotes the anticommutator).
Now we prepare the change of variable formula for the
Berezin integration. Let x; = x;( y,7), § =§&;( 1) be a
transformation from one system of generators in A, , to an-
other. Let

(2.11)

-

ox; a
Aikza_y B,'kz-xia s
;;" 2 e (2.12)
Cik == ’ Dik = : ’
Wy P
where 5/31“ means left derivative.
Let
A B
R=R(x,&y,m) = ( ) .
xEym =, p (2.13)

be the supermatrix with matrix elements (2.12). The super-
determinant (Berezinean) of the supermatrix is

A=AMXxEyn) =SdetR

=det(4 — BD ~'C)det D . (2.14)

Note that D is invertible as a consequence of the fact that
( y,m) and (x,£) are generator systems.’

Now let f= f(x,£) be an infinitely differentiable func-
tion in A,, with compact support. This means that the coef-
ficients of fin its expansion as elements of A, , are C = func-
tions of x having compact support. Then we have

f FrCm ErmIACeEpm)d,, = Jﬂx,g)dx,g-
(2.15)

In (2.15) f(x( y,1),£( y,m)) hastobe understood in the sense
of (2.6) with m =p and n =gq. The nontrivial proof of
(2.15) is contained in Ref. 5. Examples are given in Ref. 5
that show that (2.15) can be wrong if / does not have com-
pact support because in this case boundary terms may ap-
pear. We will use (2.15) for functions without compact sup-
port but assume zero boundary conditions at infinity.

Definition 2.2: A function feA,, satisfies the zero
boundary condition at infinity if f(x,0) = O(|x| ~ **+ ) for
some € > 0.

For functions with zero boundary condition at infinity
(2.15) can be applied (see Sec. IIT).

We close this section by considering the more general
case in which the change of variables in an integral involves
commutative and noncommutative parameters. We will
need this in Sec. IV. Let x,,...,X,,U 150 slls6 1€ 1T 15000,
and yy..sVp Viseeeslps M seesNgsb 15006, bE tWo systems of gen-
eratorsin A, , . . (U), UCR?*#. The change from the
first to the second system of generators is given by

X; =xi(yyvr771§)y §j =§j(yrv:y’§)’

(2.16
u,=v, 0= §j. )
In this case (2.15) reads
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ff(x( yu,n,0)E( yun,o))AxS ymd,,

=ff(x,§)a’x,§. (2.17)
On the left-hand side of (2.17) both fand the Berezinean A
depend generally on the parameters u;,0;. In Sec. IV we will
need (2.17) in a particular case in which although (2.15)
depend on parameters, both f and A are independent of
them.

llIl. SUPERSYMMETRIC INTEGRAL THEOREM FOR
SOME PARTICULAR CASES

In this section we will be concerned with two particular
cases of the integral theorem; one for two-component super-
vectors and the other for 2 X 2 supermatrices. In these partic-
ular cases the connection between the supersymmetric inte-
gral theorem and the Cauchy formula of complex analysis is
explicitly worked out. The vector case (in the particular case
of canonical generators—see below) is a well-known result
of Parisi and Sourlas,' which was used to prove the dimen-
sional reduction of RFIM (random field Ising model). The
matrix variant of the Parisi-Sourlas result (again in the case
of canonical generators) was used by Efetov,” Wegner,®
Constantinescu,* and Verbaarschot, Weidenmiiller, and
Zirnbauer®’ in the study of localization problems of disor-
dered electronic systems and the study of random matrices
and compound-nucleus scattering, respectively. Following
an idea in Ref. 4 we use the complex z,z formalism which
makes the connection to the Cauchy theorem transparent.

Let A, = A,(®,8) be a Grassmann algebra with ca-
nonical generators ©,8. We consider first the vector case in
which the vector components are the canonical generators of
A,y

U= (z,®)) V= (2)9

where z=x+iy,z=x — iy, x, yeR. Let F=F(U,V) be a
function of the pair (U, V) of supervectors in the sense of Sec.
I1. Let us comment a little on F. We write first

F(U,V) = F(x, »,0,8), (3.2)

where Fis an element of A, , . As such it defines asin Sec. I1 a
function F(@,,@,,1¥,,1,) of two commutative and two non-
commutative “variables” in an algebra A, , which we denote
by @, (even) and ¥,¥, (odd). In fact p = 2 will be suffi-
cient for our needs whereas ¢ > 2 will depend on the problem
circumstances. Two of these ¢ canonical generators are sup-
posed to be ® and 3. Certainly we can write

F(UV) =Fy(x,y) + F|(x, )0
+F2(-x,y)ﬁ+F3(x9y)®B)

3.1

(3.3)

where F;,i = 0,1,2,3 depend only on x, yeIR Without risking

too much confusion (we hope!) we write (3.3) in the form
F(U,V) = Fy(22) + F,(42)®

+ F,(z2)B + F3(2,.2)0p. (3.4)

As an example we give
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FUV) =e 3" = ¢~ % 4 e~ 70p (3.5)

i.e., in this case Fy(z,Z) = F;(2,Z) = ¢ ~ % We say that F is
regular if F, are infinitely differentiable in R? (this condition
can be relaxed to C” for some finite n).

Suppose that £ is a canonical generator in A, (the
Grassmann algebra which serves in the construction of
A, —see Sec. IT).

In the following we need the supermatrix

7q

_(! §)
S-(O 1) (3.6)
The inverse S ~' of S'is given by
1 —¢
soo(h -9, |
0 1 D

Now let U'=US ~', V' = SV be the ~transformed super-
vectors U and V. Using the definition of F as function of even
and odd variables ¢,,¢, and ¥,,,, respectively, we can
write, by using (3.2)-(3.4),

F(U" V') = F(US™'.SV) = F(@,.p2¥1%2),  (3.8)

where @,,@,,¥,,¥, are to be computed with the help of U, ¥,
and S. This can be done as follows (the result obviously
coincides with the formal computation). We write
U= (Z”®I)) V' = (E"' ).

Then we have
z|=-2-+§ﬂ9 0 = —Z§+®, BIZB (39)
We remark in passing that z, #2z’ (for & #/3). This point will
be discussed below. The result follows from

FU'/V') =Fy(z\z) + F,(Z,2,)®

+ F,(2',z2))B' + F3y(2',2,)O'B’

by just expanding F; (z',z,) = F;(z,Z + B£) in Taylor series
and using (3.9) for ®' and B’. The result is

FUWV) =F(UYV) —zF\(2,2)§ — zF3(22) 6B

z =z,

aF, dF,
+ =8B 4+ L £BO. 3.10
= B .~ &B (3.10)
Now we define invariant functions of supervectors.
Definition 3.1: We say that the regular function
F = F(U,V) of the pair of supervectors (U, V) is S invariant
if
F(US ~'.8V) = F(U,V)

for S given by (3.6) with & #p.

Remark: In Definition 3.1 the function F has to be con-
sidered in the sense defined above (see Sec. IT).

Then we have the following lemma.

Lemma 3.1: Let F = F(U,V) be a regular S invariant
function of the pair of supervectors (U, V). Then we have

(3.11)

_. _ 1 9F,
Fi(z,z) b=
Proof: Follows immediately from (3.10) by identifying
the coefficients of £f3. A further result j(which we do not
need) is F,(z,Z) = 0. ’
Remark: The same result follows if we use instead of .S
given by (3.6) the supermatrix

(3.12)
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S— (51 ‘1)) (3.13)
and its inverse
S“‘( __1§ (1)) (3.14)

In Definition 3.1 we have to assume £ #®. The reader can
work out the relations (3.9) in this case. From Lemma 3.1
follows a first integral theorem.

Lemma 3.2: Let Fbe as in Lemma 3.1 with zero bound-
ary conditions at infinity in the sense of Sec. II. Then

jF(U,V)dV:FO(O,O) = F(0,0), (3.15)

where dU dV = 2mi dz d® dz dB = 2mi dz dZ dO dp.

Remark: Whereas d® and dff are supposed to commute
(among themselves and with the ® and 8), dz and dzhave to
be interpreted as (complex) differential forms: dzdz
=dz\dz = 2i dy Ndx=2i dy dx and we omit A in the exte-
rior product. Then dU d¥V = 47 dx dy d® df. In the proof
of Lemma 3.2 we need the following well-known result of
complex analysis.

Lemma 3.3 (Cauchy): Let f(z,Z), where z=x + iy,
Z = x — iy; x, yeR, be a continuously differentiable function
with zero boundary conditions at infinity. Then

Jlafda" f fdzd- 2mif(0,0).

Proof of Lemma 3.2: F = F(U,V) being S invariant, we
use (3.12) and (3.16) to get (3.15).

Remark: Assuming the S invariance of F= F(U,¥V)
with respect to S given by (3.6) and (3.12) we get
F,(2,z) =0 as well as F,(2,Z) = 0 such that

(3.16)

FUUY) = Fy(z7) + 2 Fy(z7)08
z 0z

— Fy(z5) +~ 2 Ryz7)08. (3.17)
zZ 0z

The equality (1/z)(3/9Z)F = (1/%) (8 /dz) F implies that
F(z,Z) depends only on zZ = x* + y* and therefore

F(UY) =f,(]2|*) + f4(|z)>) OB

= /(2] + @B) = £,(VU),

where f,(|z|?) = F,(2,2).
Now let us generalize the result (3.15) to functions
F = F(U,V), where the components of U and V are genera-
tors but no longer canonical. In order to avoid inflationary
notation we will continue to write U= (2,0), V= (}),
z=Xx + iy, Z = x — Iy, where now Xx,y,0,[3 are generators in
A,,. We denote x, = m(x), y,= m(y), where x,y.,cR.
Then X=Xy+X, y=yo+y;. Let zg=x¢+ iy, Z,
= Xo — i¥o. Then z =z, + x, + iy;, Z=72Zy + x;, — iy,. The
function F = F(U,V) is again considered in the sense of Sec.
11, i.e., as a function of two commutative and two anticom-
mutative variables in A, , ¢ > 2. It is easy to see that taking
anodd £ in § given by (3.6) from the Grassmann algebra A,
(whichis used toconstruct A, , ) suchthat {8 #0 [or §® #0
if § has the form (3.13)] then the arguments of Lemmas 3.1
and 3.2 gothrough. Indeed, thetransformations U’ = US ~',

(3.18)
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V' = SV preserve the complex conjugacy of the zeroth order
components (bodies) of z,Z (i.e., of U and V) being in this
sense formpreserving. This and the definition of Berezin’s
integral reduce the proof of the general case to the proof of
the Lemmas 3.1 and 3.2.

We state the final result as a generalization of Lemma
3.2.

Lemma 3.4: Let F = F(U,V) be a regular function of
the pair of supervectors

U= (2,0), Vz(;), z=x+41iy, z=x—1iy,

where x, y,0,5 are generators of A,,. Suppose that F has
zero boundary conditions at infinity and is invariant w.r.t. S
givenby (3.6) with§ #0in A, ¢ > 2, which contains the two
odd canonical generators of A, , . In formulating the S invar-
iance F has to be considered in the sense of Sec. II as a func-
tion of commutative and noncommutative variables with
values in A, ,. Then

J‘F(U,V)a'UdV=F0(O,O) = F(0,0), (3.19)

where the integral in (3.19) is considered in the Berezin’s
sense and the meaning of dU dV is obvious.

We pass now to the more interesting case of matrix in-
variants. We start again with the simple case of a 2 X 2 super-
matrix

o-(5 )

where a,b,0,( are canonical generators of the algebra A, ,.
The imaginary unit 7 in front of  in Q will play an important
role in what follows. As above we need also the algebra A, ,
g>2suchthat A,, CA, . Let F= F(Q) be a function of Q
which we interpret as

where the arguments in F can be replaced by commutative
and anticommutative elements in A, , (see discussion above
concerning the vector case).

We introduce complex variables z=a + ib,Z=a — ib
and write as in (3.4)

(3.20)

F(Q) =Fy(z2,2) + F\(2,2)0O + F,(2,2)B + F,(z,Z)0p0.
(3.22)

As an example we mention

F(Q)=e‘S"Q2=e_ZE——2€_ZE®ﬂ, (3.23)
where Fy=e¢ 2 F|=F,=0,F,= —2e %

Now let @' = .5 ~'QS with

a o

Q= (ﬁ ib )
Then @’ =a+ B, ib'=ib+ BE, O =0+ £(a—ib), B’
=/ which in the zZ notation reads: z,=a +ib’

=z+26,2=a—ib=Z,0=0+Z =4
We can write as in the vector case

F(Q')=F(S™'QS) = Fy(z,,Z) + F,(2,,)0®’

+ Fy(2,Z2)B" + F3(2,,2)0®'B’
(3.24)

and get
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F(Q") = F(Q) +ZF\(2,2)§ + ZF5(22)£B

2% g 2% £, (3.25)
gz dz
We introduce the following.
Definition 3.2: We say that the regular function

F = F(Q) of the supermatrix Q is S invariant if
F(S7'0S) = F(Q) (3.26)
for S given by (3.6) with £ 8. Then we have the following

lemma.
Lemma 3.5: Let F= F(Q) be a regular, § invariant

function of the supermatrix Q. Then

F,(z,2) ——% (3.27)
zZ 0z
Proof: Follows from (3.25) and (3.26) by identifying
the coefficients of 8.

Remark: The Sinvariance implies also F, = 0. The inte-
gral theorem in the z,Z formalism follows.

Lemma 3.6: Let F = F(Q) be asin Lemma 3.4 and hav-
ing zero boundary condition at infinity. Then

fF(Q)dQ = F,(0) = F(0), (3.28)
where
dQ = midzd® dz dB = wi dz dz dO dp. (3.28")

Proof: Follows from (3.16) and (3.27). A second proof
of this Lemma appears in Sec. IV.

Remark: In dQ=midzd® dZdf we can replace
dzdz = —2idxdytogetdQ =27 dxdyd® dp. This is to
be compared with dU dV = 47 dx dy d®© df3 in the vector
case. Asin the vector case, Lemma 3.6 can be generalized for
functions F = F(Q), where the matrix elements of Q are
generators but no longer canonical (i.e., for the case of ma-
trices Q where a,b are commutative and ©,8 noncommuta-
tive “variables”). We do not repeat the arguments which in
this case do not differ from the vector case studied above but
only give the final result in form of the following.

Lemma 3.7: Let F F (Q) be a regular function of the
2X 2 supermatrix Q = 9, where a,b,0,3 are generators
of A, ,. Suppose that F has zero boundary conditions at in-
finity and is invariant w.r.t. § given by (3.6) with £8 #0in
A, q>2, which contains the two canonical generators of
A, . In formulating the S invariance F has to be considered
in the sense of Sec. II as a function of commutative and non-
commutative variables with values in A, ,. Then

[ Frag=Fy = Fo, (3.29)
where the integral in (3.29) is considered in the sense of
Berezin and the meaning of d@ is obvious from the discus-
sion above.

Remarks: (i) Again the transformation Q' =S ~'QS
preserves the reality of the zeroth-order terms in a and b
(i.e., the bodies of transformed @’,b ' stay real). This reduces
the proof of Lemma 3.7 to the proof of Lemma 3.6.

(ii) The matrix S used to formulate the Sinvariance can
be taken of the form (3.12) with £050. It is interesting to
remark that in this case the S invariance of F(Q) gives the
same relation (3.27) in contradistinction to the vector case in

985 J. Math. Phys., Vol. 30, No. 5, May 1989

which invariance w.r.t. S given by (3.6) and (3.12) induced
the special form (3.18). As an example we mention the su-
perdeterminant F(Q) = S det Q which is S invariant w.r.t,
allinvertible 2 X 2 supermatrices S'but cannot be written as a
function of |z|. Indeed we have for  #0

Z+32 ( )
1— O,

z—Z Z— z2 p

Generally all we can say is that a function F = F(Q) of

Q, which is invariant w.r.t. S is given by (3.6) and (3.12)
with & 3, ©, has the form

F(Q) = 2 9F,(z,2) 98,
Jz

For the example (3.30) thls equality is obviously satisfied.
(iii) Let us consider a supermatrix S of the form

Sdet Q=

(3.30)

Fy(22) + (3.31)

-4y ¢ )
S= ( s (3.32)
7 1—inf
where the inverse is
_ I — iy 13 )
S = ( 2 ] (3.32)
-1 1=

and &,7 are canonical generators of A, . Then Sinvariance of
F(Q) with S given by (3.32) implies (3.31) too, as it can be
easily verified. We will use this result which is also valid for
two-component supervectors in Sec. V.

Before closing this section we comment on the results
obtained so far. The reader may have questioned the necessi-
ty of introducing the imaginary unit in front of  in the super-
matrix Q. This is quite essential for the validity of the formu-
las (3.28, 29). Leaving out / in front of bR the integral in
(3.28,29) can diverge because the singular set in F, (the line
a = b) is not integrable! The imaginary unit in front of »
reduces the singularity to the single point @ = b. It is amus-
ing that (3.28, 29) follows directly from the Cauchy integral
formula in the z,Z formalism. This provides some hints of the
intimate connections between complex and noncommuta-
tive extensions of real analysis.

IV. THE MAIN RESULT {PARISI-SOURLAS-WEGNER
SUPERSYMMETRIC INTEGRAL FORMULA)

In this section we formulate and prove a general version
of the supersymmetric integral formula. It was proposed by
Wegner as a generalization of the Parisi-Sourlas result for
the case in which the integrand depends both of supervectors
and supermatrices. Our version is more general than that
proposed by Wegner (for a discussion of this point see Sec.
V). We call it the Parisi-Sourlas—Wegner supersymmetric
integral formula. Let us remark that a particular case of it
was used already some time ago by Efetov in his study of the
localization problem.> We study this formula in two steps:
we start with the case of canonical generators (the case used
so far in physics) and then extend it to arbitrary ones. The
nice point in our proof is that the connection to the Cauchy
integral theorem of complex analysis becomes transparent.
Before starting we remark that in contrast to the cases stud-
ied by Parisi, Sourlas, Efetov, and Wegner we very much
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relax the invariance condition: instead of some super Lie
groups (orthogonal, unitary, etc.) as in the physical work
mentioned above we only need invariance w.r.t. a discrete
group isomorphic to the group Z" of integers.

Let U,V,,0,,V,,...,.U,,V, be m pairs of r+ r=2r

component supervectors of the form

E{i)

E,(_i)

) —_—
9/7, )’ I/‘ - ) ’
gy

(1) () H(D

1 seesZp o1 e (4.1)

U,=(z

al?
where z") =x{? — iy{"™ is the complex conjugate of z{"
=x/" + w9, x0,yP%eR, i=1,..,m; j=1,.,r and
pﬁ”, WP, 0,0t are canonical generators of the Grass-
mann algebra A,,. In Sec. I1I we studied the case r = 1 = m.
Let U= (U.), V= (V,}, and F= F(U,V) be a function of
(U, V) in the sense of Sec. II. For a discussion of this point
the reader is referred to Sec. III where the case r = 1 was
considered in detail. No new aspects appear for > 1. Here,
F=F(U,V) is an element of A,,,, that defines a function
with valuesin A,, ., ¢>2r (A,,,, CA,,,,).
Let £,,...,£, be new canonical generators, different from
Oy, Fori=1,...,r let

Xi = §iEr,r— i+ 19
ie., (Xi)jk = 6g'5rvi+ xS

and
S (Ir X:)
N0 /)’

It is immediate that for all {, j<r,

s (1, X,-+X,)
=~ \o I

s-(5 )
N0 1)
Hence the group G generated by S|,...,.S, is isomorphic to Z".
We are going to generalize first the results of Sec. III to

the case r> 1. We say that the regular function ¥ = F(U,V),
U= (U), V=(V,),i=1,..,mis G invariant if

F(US~'.8V) = F(U,V)

for all SeG (for a more general case see Def. 4.1).

HereUS ~' = (U.S ="),SV = (SV,). Thenwehavethe
following.

Lemma 4.1: Let F= F(U,V) be a regular G invariant
function of supervectors U= (U,), V= (V;), i=1,...m
Suppose that Fsatisfies the zero boundary condition at infin-
ity. Then

(4.2)

and

(4.3)

(4.4)

f F(U,V)dU dV = F,(0,0) = F(0,0), (4.5)
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where dUdV =117,
Lemma 3.2.

Proof: In the first step we consider the case m = 1 and
arbitrary. We write

fF(U,WdUdV:f[jF(UV) H (2mi dz; dz;)

j=2

dU.dV; and dU,dV, are as in

r—1
X II (dp; daj)] 27idz, dz, dp, do,.

i=1

(4.6)
We have
r—1
F(UW H (2mi dz; dZ;) H (dp; do;)
ji=2 i=1
r—1
FUS ;.S V) H (2mi dz; dz;) H (dp; do;),
o (4.7)
where §' = 5,5, = 5,5, and
1 i
Sl: .. . (48)
1

The proof of (4.7) is omitted because a similar proof appears
below.
This shows that

r—1
JF(UV) H (2mi dz; dz;) H (dg; do;)

j=2

as a function of (z,,p,), (0,) is S ; invariant and has zero
boundary condition at infinity. Application of Lemma 3.2
reduces the number of components in the vectors Uand ¥ by
one. Repeated application of the same grgument proves the
result for m = 1 and r arbitrary.

The next step in the proof of (4.5) is to consider the
general case

fF(UWdUdV:jF(Ul,Vl,. s Vm) H dU, dV,
T @)
where Fis regular and G invariant:
F(U,S ~'\SV,US ' .SV,,...,U,S~LSV,)
=FU,V,,Up,V,,...,U,.,V,.) (4.10)

for all SeG with zero boundary condition at infinity. The
proof of (4.9) goes by induction in m. Let us denote

U,V T] U, av..

H(ULWV,) = JF( UV, Us, Voo,
=2
(4.11)

We prove that the function H(U,,¥,) is G invariant. The
idea is to take a change of variables on the right-hand side of
(4.11) as

Uv'=Us-', =SV, i=2,..m (4.12)

and to apply the Berezin’s change of variables formula in the
integral (4.9). This is not entirely trivial because the genera-
tors in S enter the change of variable formula as (noncom-
mutative) parameters. But this situation was discussed in
Sec. II [see (2.15) and (2.16)].
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We only have to compute the superdeterminant (Bere-
zinean) of the transformation (4.12). This can be done by
elementary arguments but there is a very simple way seeing
that the Berezinean A equals unity. Indeed, let

2y

U= (2,y...2,,p15--p,)s V=

be two supervectors. Then we have

fe‘“”’”dUdV: 1. (4.12")

The Berezinean A of the linear transformation U’ = US ~!,
V' = SV ~! does not depend on z;,Z,,p;,0;, i = i,...,r. On the
other hand, the integrand is obviously .S invariant such that
A = 1. This shows that

HUS~LSV)

=JF( US ~ SV, Uy, Vs U, Vo)

du, dv,

s

X

i=2

= J F(US~\SV,,U,S ~\,5V,,..,U, S8V,

)(H dU, dV, =H(U19V1):

i=i

(4.13)

ie, H(U,V,) is Ginvariant (and obviously has zero bound-
ary condition at infinity). Now the previous result and in-
duction in m proves the result.

We will study now the case of supermatrices of the form

Qz(g ill;)

where A and D are usual Hermitian rXr matrices and
B=0©, C=pf have odd canonical generators @5,
i, j = 1,...,r as matrix elements. The total number of canoni-
cal generators in (4.14) is 472, where 27 ? of them are even
and 272 odd.

Let F = F(Q) be a function of the supermatrix in the
sense of Sec. II, FeA,,:,,:, with values in A,,., where
g>2r% A,,:,,: CA,,-,. We say that the regular function
F = F(Q) is G invariant if

(4.14)

F(S™'0S) =F(Q) (4.15)

for all SeG with &, #p,,, i = 1,2,...,r. We will prove the inte-
gral theorem for matrices (see below) by using a nice induc-
tive way suggested by Wegner.® To understand this idea let
us write the supermatrix Q explicitly:
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ay, Lalz" a, O ®lr«:l Q,,
a;y Aoge o o 6 o s o o ® 2 r—1 ®2r
Q= an (.Drr
B id,,
\Br——],l Br-1,2“.idr—l,r—l idr—i,r/
ﬂrl BrZ.“Brr idrlu.idr,r—l ®lr
(4.16)
This suggests for @ the decomposition
a, U 0,
Q= Qy,r = V Qr—2,r—2 i} ’ (417)
rl v idrr
where
a;
alr
U=(a;4,0,0,,_,), V= )
B
ﬂr——ll
(4.18)
and
®2r
- 0, ~ - -
v=| | U=6aBid, il 4a9)
tr
id

r—1,r

are supervectors and

OOy 0y 0y,

Q _ arZ.”arr ®r1'”®r,r41
TETEONL BariBy | dyidy
r-],z"'ﬂr—l,r idr—],l'“idrIAI,r-]
(4.20)

is a supermatrix. We remark that the supervectors U,T/ in
(4.19) have the even and odd elements interchanged.
Now for the function £ = F(Q) in (4.15) we can write

F=F(Q) =FUV,07,0,0,), (4.21)

where

®lr)

idf?' ’

In this way a function of a supermatrix Q appears as a func-
tion of supervectors and supermatrices of lower order. This
decomposition will be used in the inductive procedure for

proving the integral theorem for matrices. Let S, be given by
(4.8). Then

a,
=0, ,,_, and Q, =(B
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F(S'0S) = F(US; \\S,V,US; \,S,V,

710887 'DS,),
(4.22)
where § = 5,5,.
Now we are in the position of proving the following.
Lemma 4.2: Let F= F(Q) be a regular, G-invariant
function of the supermatrix Q given by (4.14). Suppose that
F satisfies the zero boundary condition at infinity. Then

[ F@de=Fy© = Foo), (4.23)
where dQ is inductively defined by (3.28'), (4.5), and
dQ =dQ,dQ,dUdVdUdv.

Proof: The idea of the proof is at hand. Like in the proof
of Lemma 4.1 we integrate out first the vectors IRAINE
then the matrix Q,. This is the inductive step we need. Be-
sides the result on Berezinean of the change of variables for
vectors which was used in Lemma 4.1 we need also a second
result concerning the Berezinean A of the transformation
Q' =5 ~'QS with S given by (4.2). An easy way to see that
A = 1is to use the relation

[ersrerag=1,

which can be proved directly and proceed like in the proof of
Lemma4.1.

Putting together Lemmas 4.1 and 4.2 we get an integral
theorem concerning invariant, regular functions of super-
vectors and supermatrices with canonical generators as ele-
ments. We skip it here because we are going to formulate
now a more general case in which the generators are no long-
er canonical. The next theorem will be the main result of this

(4.24)

paper.
Let
Z(0
E(')
) H (D) [©) r
U = (2",...2,0p1",0p”), V= wl = 1,....m,
gy
ot
(4.25)

be m pairs of supervectors where z/” = x{” + iy{”, Z”
— () _ (D
=X; iy;" and let

A [©)] B(i) .
Q:(Cm iD“’)' i=1,.,n (4.26)

be n supermatrices with matrix elements 4 ¢ = (a§’), B
= (®;’i))’ C¥= (B](l:))y D(I) = (dj(l:))’ ]!k = ly-'-yr where
0 (D (D 5

ay =xy’ + iy, forj < k and aj) = x; — iy}? for k> jand

similar relations for D d =uf’ +i®F, di}
= u;) — iV} for j<k. Assume that the components of U,

V; and the matrix elements of Q, are generators of an algebra

A2mr+ 2nri2mr 4 2nr’

Let F=F(U,V,,...,.U,, V... 0....0, )} be a function of
the m pairs of supervectors U, and V,, and of n superma-
trices ;. Now suppose that there is an algebra A,,,, | 5,2,
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with g>2mr + 2nr? (odd generators) large enough and
such that Ay, . 2ur22mr 4 20r2 CAgpr 4 20,24 - SUppose that F
belongs t0 A, 3nr22mr + 20,2 - According to arguments in
Sec. II we can interpret F as a function of commutative and
noncommutative “variables” in A,,,, , ;,,-,. We will need
this interpretation in order to define the G invariance of F.
Definition 4.1: We say that the regular function
F=FU,V,0),i=1,..m,1=1,.,nis G invariant if

FUS~\SV,S$7'Q0,8) =F(U,V,0,)) (4.27)

for all SeG, where S is given by (4.2) with matrix elements
&, j=1,..,r being odd elements in A,,, , ,,:, such that
£0;#0and 8, #0,j = 1,..,r.

Following the representation (4.16) we decompose the
supermatrices @, inductively as in (4.17). This allows us to
define dQ,, / = 1,...,n as in Lemma 4.2 but now for the gen-
eral case of arbitrary generators. The same remark concerns
dUdV,, i = 1,...,m. Now we have the following.

Theorem 4.1: Let F= F(U,V.,...,U,.,V...Q...0,) bea
function of m pairs of supervectors U,,V, and n superma-
trices Q, with zero boundary condition at infinity. The func-
tion F has to be considered as a function of commutative
and noncommutative variables in Ay, 0.0,
DAz 4 20r2.2mr + 2me2 Where g=2mr + 2nr 2 4 rin the sense
of Sec II. If Fis G invariant we have the supersymmetric
integral formula

JF( U ViU Vs Qs Q1)

X dQ,,..,d0, dU, dV,,...dU,, dV,,
= F(0,0,...,0,0,0,...,0) = F(0). (4.28)

Proof: The proof follows from the chain of lemmas pre-
sented in Secs. I1I and IV by integrating out first the super-
vectors and then inductively the supermatrices. In the last
step the decomposition (4.18) of supermatrices, proposed
by Wegner, is essential.

Remarks: (i) In the transformations U'!= US !,
V!=S8V,Q'! =S50S thezero-order terms (bodies) of the
even generators preserves the complex conjugation.

(ii) By induction, the proof of Theorem 4.1 was in fact
reduced to the corresponding result for a pair of two-compo-
nent supervectors and a 2 X 2 supermatrix, respectively. In
this particular case we have shown in Sec. II that the integral
theorem follows via the z,Z formalism from the Cauchy for-
mula.

(iii) The G invariance used in Theorem 4.1 is 2 minimal
invariance condition involving only the discrete group Z".

(iv) Certainly we can replace S given by (4.2) in
Theorem 4.1 by

1
S, = & 1 (4.29)
1
. 1
or by other variants
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§r
(4.30)

The form (4.30) will be needed in Sec. V.

In the next section we study special cases involving in-
variance under a Lie supergroup (orthogonal, unitary, etc.)
which were used in physics (see for instance Ref. 6).

V. SPECIAL CASES

The new result proved in Sec. IV shows that the invar-
iance condition under which the supersymmetric integral
formula applies is very weak. Indeed invariance under the
discrete groups Z or Z" is sufficient. Certainly some strong
invariance, as for instance invariance under a Lie super-
group, can also imply integral formulas. The simplest case of
this type appears in the remark (iii) after Lemma 3.7 of Sec.
II1. We will study here only the case of the unitary super-
groups. For defining these supergroups we have to introduce
first an involution in our Grassmann algebras. We follow
Ref. 8.

Let A = A, be a Grassmann algebra with the usual de-
composition into even and odd parts:

A="Aa'A (5.1)

As is well known, it is possible to introduce in A two
kinds of adjoint operations which extend the complex conju-
gation in C. The adjoint of the first kind is an involution
a—a* on A defined by

a,) CA)*CiA, i=0,1,

b)) (af)* =p*a* for all a,BeA,

) a**=qa for all aeA.

The adjoint of the second kind is an antiinvolution
a—a* on A defined by

a,) CAY*CA, i=0,1,

b,) (afy*=a*B* for all a,fFeA,

c,) a**=(—1)"a for all ae?A, ye{0,1}.

UPL,(n,m) = {(0 X

0

wherea® =‘a*, £+ = ¢ *, etc.
Proof: We give an elementary proof based only on the
definition of UPL,. Indeed from (5.4) we get

G )= 306 9

_ (a+a -7y af—nTh

Era+ bty §+§'+b+b)' 5-6)
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u 0) ((In+§§+)—1/2_(In+§§+)~1/2§)
(lm+;+§)_1/2§+(1m+§+§)_1/2

0
(u v) -superunitary and §-(n,m) matrix with odd e]ements} ,

An involution of second kind can exist only if ¢ in
A = A, isaneveninteger. We will use in this section only the
involution of the second kind although all results will be
valid also for the involution of the first kind. We remark that
in a pair of supervectors U, ¥ or in a supermatrix the number
of generators is even so that there is no problem in working
with the second kind involution. _

Let us define the unitary supergroup UPL,(n,m) of su-
permatrices of the second kind (i.e., second kind involution
is used denoted as index 2 on UPL).

Let

a ¢ )
A= , 5.2
(77 b (5:2)
be a supermatrix over A, and let by definition
ta‘ - t -
A* = ( ! ) , (5.3)
Lee  lpe

where a— g is the usual transposition of matrices. Then we
define

UPL,(n,m) = {UePL(n,m)|U* = U~ '}. (5.4)

In (5.4) PL(n,m) is the general linear graded Lie group
of invertible supermatrices. Note that a supermatrix 4 as in
(5.2) is invertible if @ and b are invertible matrices.

In this section we will consider functions F of r super-
vectors and 7 X r supermatrices which are invariant w.r.t. the
unitary supergroup UPL,(r,r).

We will show that the supersymmetric integral theorem
is valid for functions F that satisfy a zero boundary condition
at infinity and are invariant w.r.t. the supergroup UPL,.
Certainly a result of this type is weaker than the result of
Theorem 4.1 in which the invariance condition is imposed by
means of a discrete group. Nevertheless we study this case
because it appears in physical applications Ref. 6. A similar
result is valid for the case of invariance with respect to other
classical Lie supergroups (e.g., orthogonal). Before proving
this result we need a general formula for the elements of
UPL,. This will be done in the following.

Lemma 5.1: For all n,m>1 we have

(5.5)

Equation (5.6) is equivalent to the following set of equa-
tions:

ata—-nty=1I, (5.7)
até—nTb=0, (5.8a)
Eta+b*tn=0, (5.8b)
EYE+b b=, (5.9)

We get from (5.8a)
F. Constantinescu and H. F. de Groote 989



n' =a*fb™l. (5.10)
Weusea™ ™ =a (foraeven) any™* = — 5 (fornpodd) in
order to write

n=—(b H*Eta. (5.11)

Introducing (5.10) and (5.11) in (5.7) gives
I,=ata—ntyp=a*a+a b~ "(b~") £ a
=a* (I, +&b7'(&b ) )a.

Let us use the shorthand notation

F=¢b70 (5.12)
Then
I, =a*, + &6 )a. (5.13)

Now observe that { has odd entries, henceincase m-n > 1 we
have

(GE)T=—grr T =007, (5.14)
and similarly
O =¢"¢ (5.15)

[In case m = n = 1 we simply have
(CEX)F =¥ **= —g*=00*
and (§*)* = (§*0).]

Moreover we can write the square root of I, + {£ * as the
(finite!) sum

) 1 1
1 R A ST S Y2
(I, +66%) n ST o T

Due to (5.14) we obtain

SR P
n b/ " \o bf)\U,+ETO VT

It is a simple calculation to show that conversely every su-
permatrix of the form

(1” +§§+)—1/2

(u 0)( -, +§§+)f‘/2§)
0 v (Im+§+§)fl/2§+ ’

(Im +§+§)—1/2

where (4 °) superunitary and ¢ an (»,m) matrix with odd
entries belongs to UPL,(#n,m). This proves the lemma.

Remarks: (i) Let A, be the Grassmann algebra of a ¢
dimensional complex vector space: A = A(F). One can
show that conjugations of the first kind are in one-to-one
correspondence with semilinear mappings ¢: V- V (i.e., ¢ is
additive and ¢(Av) = Ay (v) for all AeC, veV) such that
¥” = id,. Similarly conjugations of the second kind are in
one-to-one correspondence with semilinear mappings ¢:
V> ¥V such that ¢ 2= —id,, i.e., with quaternionic struc-
tures on V. Therefore conjugations of the first kind exist for
all geN, conjugations of the second kind exist for all even
geN. ‘

(ii) Obviously one can prove in the same way the very
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((In +§§+)1/2)+ — (In +§—§+)l/2.

This enables us to rewrite (5.13) as

I =a*(,+¢")a
=a* (I, + 1)U, + 6V

— ((I" + gg— +)I/Za)+(1" + ;; +)|/20.
This shows that the even matrix

a; =, +¢%)"a (5.16)

is unitary with respect to the adjoint operation x—x~". The
very same reasoning shows that also

b=, +5+0)'% (5.17)

is unitary with respect to x—>x*. By (5.11) and the defini-
tion of { we have

ma = —¢T. (5.18)

Equations (5.16)—(5.18) show that we have the following
product decomposition of the unitary supermatrix (5 3):

G 5)
=( (I, +56)'"

;(Im +§+§)~1/2)
§+(In +§§+)—l/2

(Im +§+§)_1/2

(ag 0) 5.19
X 0 b, . (3.19)
Application of # gives
. (In +§§+)~1/2§)
(I,n+§+§)_l/2
(5.20)

!

analogue of Lemma 5.1 also for conjugations of the first
kind. For unitary supergroups of the first kind a formula
similar to (5.5) was obtained by Berezin using the Lie super-
algebra of the corresponding supergroups (see Ref. 5, p.
276-277). The precise relation between the two kinds of uni-
tary supergroups will be discussed in a forthcoming paper,
answering a question in Ref. 8.

(iii) Now we will spell out a subgroup of UPL, needed
in the rest of this section. Indeed let ¥ = v = I, and

g [

Sr 3

The matrix Sin (5.5) constructed with these u,v,£,¢ + gener-
ates a subgroup of UPL,(r,7). For r = 1 we have

S:(l—g,éﬁ, ).
T T

But this is exactly the supermatrix (3.32) where n=¢ %,

(5.21)
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& = £, which was used to prove one of the variants of the
integral theorem. With these preparations we can state the
following resuit which is a weak form of Theorem 4.1

Theorem 5.1: Let F = F(U,,V,,...,U,.,V...0,....0, ) be
a function of m pairs of supervectors U, V; and »n superma-
trices Q, with zero boundary condition at infinity. The func-
tion F has to be considered as depending of commutative and
noncommutative variables in the sense of Theorem 4.1. If F
is invariant w.r.t. the unitary supergroup UPL(r,r) (of the
first or second kind), then the integral formula (4.28) is
valid.

Proof® The invariance with respect to the unitary super-
group implies invariance with respect to .S in (5.21). The
remark (iii) after Lemma 3.7 in Sec. III and the inductive
arguments in Sec. IV complete the proof.

Remark: In applications to disordered systems and nu-
clear physics, the unitary supergroup appears as a group of
transformations which preserves the super scalar product.

VI. REMARKS AND CONCLUSIONS

We have extended results by Parisi, Sourlas, Efetov,
Wegner, and others concerning integral formulas for super-
symmetric invariant functions. In particular we worked
with arbitrary generators as variables in the integrand func-
tion using throughout Berezin’s integration theory.> The su-
persymmetric invariance condition was relaxed from a clas-
sical Lie supergroup to a discrete group. In Sec. V we needed
the general form of elements of unitary supergroups for
which we gave proof without using Lie superalgebras.

In proving the integral formula for supermatrices we
used an idea of Wegner. Before finishing we want to remark
that a second proof of the integral theorem could be possible
by using an ideal of Efetov. We give some details for the case
F(Q), where Q is a 2 X2 supermatrix.

Notice that Berezin’s integration is a delicate matter.
This is shown in the following example which we learned
from Ref. 7.

Consider the function

F(Q)=e~ "2, (6.1)
where (@ is given by (3.20}. We already know that
SF(Q)dQ =1 (6.2)

(using our norming conventions for dQ, otherwise the result

is 277). On the other hand, the supermatrix Q is diagonaliza-

ble with eigenvalues
Ay=a+ 6B , A, =1ib+ 6B

a-—ib

. (6.3)

a—i

We could try to make a change of variables in (6.2) to
Ay, A, keeping the odd variables unchanged. Because
F(Q) =exp(— A% —A3) does not depend on ® or 3 and
because the Berezinean of this transformation equals vnity,
the formal result we obtain zero instead of one! The contra-
diction is explained by the singularity at @ = bin (6.3). This
phenomen is typical for supermatrices and seems to invali-
date the idea of changing the variables to the eigenvalues.
Nevertheless we can apply a slightly modified change of
variables which removes the singularity ata = b.

We introduce new variables x, x,, £, 7 by
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a=zx,+ &n(x, — ix,),
ib=ix, + En(o, — ixn,),
O = —£(x, —iny),
B=n(x, —ix,).

The Berezinean of this transformation can be explicitly com-
puted as

(6.4)

2
A= | 2ab®h =( L ) (6.5)
(¢ ,5,E,77) %, — D,
The change of variables formula (see Sec. IT) gives
fF(Q)dQ:fdx, duydpde— L e O
(5ey — i2y)
(6.6)

which again equals zero! The contradiction is explained by
the fact that the Berezinean (%, — ix,) ~2 is not integrable
with respect to dx, dx,.

However, the formal computation above provides us
with an idea to rigorously prove the integral theorem for
2:X 2 supermatrices. Indeed, let us consider

I, =JF(Q)e—"S"QZdQ, 1>0. (6.7)

We want to compute [,. Differentiating with respect to
gives

dl .
ii:J ( — Str Q2)F(Q)e—#S"2°dQ. (6.8)
I23
Performing the change of variables (6.4) we get
dl,
40 6.9
p (6.9)

u
and this result is now correct because

Str Q2 =53 + 33 = (5, + i2¢,) (3¢, — i%,)

cancels the nonintegrable singularity of the Berezinean. It
follows that

(6.10)

This constant can be found easily by applying the usual
Laplace method for p-—->o. The expected result
SF(Q) dQ = F(0) follows.

It is very appealing to use this idea for a proof of the
general case of the integral theorem but this does not seem to
be easy. In any case we prefer the proof in Sec. IV giving a
more general result (for the diagonalization of superma-
trices the discrete group used in Sec. IV is not sufficient).

1, = const. = I,
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On linear unitary transformations of two canonical variables

Jerzy F. Plebanski®

Centro de Investigacion y de Estudios Avanzados del IPN, Departamento de Fisica, Apdo. Postal 14-740,

07000 Mexico, D. F., Mexico
J. D. Finley, Il

Physics and Astronomy Department, University of New Mexico, Albuquerque, New Mexico 87131

(Received 29 December 1987; accepted for publication 28 December 1988)

A useful parametrization of the groups SO(0,3) and SO'(2,1) is presented that has simple,
rational composition laws, albeit that it has a (quasigraded) structure. This “tangential”
parametrization is also advantageous in providing a rather simple 1-1 “picture” of the elements
of the groups in question. As well, the parametrization allows an explicitly finite result for the
composition law needed for the (abstract) Baker—-Campbell-Hausdorff formula for
exponentials of objects formed from the corresponding Lie algebras. This approach, in turn,
allows a useful beginning to the problem of the determination of flows on the group manifold,
i.e., the determination of analytic curves given the initial direction of the curve.

I. INTRODUCTION

Motivated by a return, after more than 30 years,"* to a
study of linear unitary transformations, we would like to
present some subtleties in the description of the three-dimen-
sional, real Lie groups SO(n,,3 — n, ) that still deserve
some interest and have previously escaped much attention.

Restricting consideration to the connected component
containing the identity, these groups can be conceived as the
set of all 3 3, real matrices L such that

gnﬁ‘Lav]Lﬂé =g71§7 (lla)
det(L ;) = + 1, (1.1b)
where g, with a, =1, 2, 3, are the components of the
metric on the underlying space. There are, however, in three
dimensions, only two essentially different signatures for such
a metric:
“diag( 1’1’ - 1)”)
IlgaB “ = . . L.
|diag{ — 1, — 1, — )|}, elliptic,
where the (unusual) choice of the signature for the elliptic
case will arrange in both cases that
det(g,z) = — L. (1.3)

This is then equivalent to saying that we study, simulta-
neously, the two groups,® SO(0,3) and SO'(2,1) where, for
the latter case, we must also make the restriction

L*>1, for SO'(2,1), (1.4)

0 as to maintain our discussion with the component con-
taining the identity. It is well known that the generators y *
for the Lie algebras for these two groups may be chosen so as
to satisfy the commutation relations (CR)*

hyperbolic, (12)

[W’yﬁ] - *eaﬁ‘nyn, (1.5)
where the metric is used to lower the indices
Vo =8V (1.6)

Itis the intent of this article to present a parametrization

for these two groups that allows a simple formula for the
group composition in terms of rational functions, involving

) On leave of absence from University of Warsaw, Warsaw, Poland.
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numerator and denominator no worse than products of the
original parameters. The simplicity of this representation of
the composition law will also allow the explicit, finite deter-
mination of the composition law for the Baker~Campbell-
Hausdorff (BCH) formula, i.e., to find z where e*e” = ¢,
where x and y are linear and homogenous in the generators
y”, taken only as abstract quantities obeying (1.5) and
(1.6). A complete systematization of the results of both the
group composition law and the (associated) Baker—-Camp-
bell-Hausdorff composition law is laid out in Table I, in Sec.
IVv.

An additional benefit will be a beginning of an analysis
of analytic curves on these group manifolds, the starting
point for the attack again being the simplicity of the compo-
sition law. All benefits, of course, come at some price. In this
case, the price comes because the range of the particular
parameter space is infinite; therefore, a boundary set must be
added with a slightly different form of parametrization, ob-
tained by taking limits. Nonetheless, as will be seen, quite
complete characterizations of all the elements of both groups
may be given succinctly and simply.

1. THE CANONICAL PARAMETRIZATION OF SO'(2,1)
AND S0O(0,3)

We first give a particularly useful way of realizing the
canonical parametrization. Let

x:=x,7% {x,te#? (2.1)
and consider forreal 4 the curvein the Lie algebra defined by
V(A):=eye™ M, e, (2.2)

Using the commutation relations, one then calculates
that

;LA Y (A) =[xy le*
= X, €75y (A): = M3y P(A), (2.3)

where, as in the spinor notation of van der Waerden and
Infeld, the dot denotes the original position of the index ma-
nipulated by g ;. By defining
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TABLE 1. Parametrization of group products, viewed from v Ud 7",

Condition Composition Effective parametrization BCH composition
L45,0740  L(s)L(t") = L0 o= (14 5,0 %) 7 (57 4 £ €S, 1) el Tl = gl
I+s,64=0 LML) =L(FY LR K AN elrlgshrt = et
50940 LGEMLG) = Lr") 1= Gt TGN 4 €S, 1) el l5T gl
509=0  LGBMLG") =L(F) = 4 €51, el e sl = gl
50740 L(s"YL(1")y = L(r") Pr= (st N es,1) el = 1)
s,09=0  L(s")L(1") = L(F) N N el | gl
51940 LML) =L(r" = (5,0") "€, 1, el l = )
309=0 L(G"L(") = L(F" =5 1, e ¥ = 7
A: — \/ X xP = \/g o (2.4) hyperbolic or the elliptic signature, from (1.2). At this
A hp b ;g . point, however, their interpretation bifurcates. To explicate
one easily shows that the matrix this, we must examine the quantity A more closely. First,
M= M| = ||x, %] (2.5a)  notethat (2.9) defining L is insensitive to the choice of sign
satisfies the Hamilton-Cayley equation of A. We therefore choose the sign of the square root so that
N 5 when
M°* — A*M =0, (2.5b) ,
. x, X" =A"20-A>0 (2.13a)
and consequently has the eigenvalues (0,A, — A).
Taking as boundary condition for (2.3) the obvious  20d when
¥7(0) = 9, we easily see that the solution to (2.3) has the x,x"=A’<0-A = 46, 6>0. (2.13b)

form
Y(4) = L% AP,
where
L(A): = ||L % (1)| =1 + [sinh(AL)/A]1M
+ [{cosh(AL) — W/A?IM?, (2.7}

while it is also worthwhile to write down explicitly that

(2.6)

(M?*)%y = A%6%; — xxp. (2.8)
By setting
L:=L(1)y=7+4 (sinh A/AM
+ [(cosh A — 1)/A’1M?, (2.9)

or
L=|[L%]| =6 + (sinh A/A)x,e*;
+ [(cosh A — 1)/A°1 (A5, — x“x4) ||,

and noting that L shares eigenvectors with M, one easily sees
that the eigenvalues of L are (1, *, e ~*), from which we
have that

det(L) = + 1,

Tr(L) =1+ 2 cosh(A).

(2.10a)
(2.10b)

Notice also that when A -0, the limit exists and then
(L |A:0 _1)3 =0
(2.11)

As well, insertion of the components of {2.9) into (1.1) tells
us that our L satisfies that equation.
We also have from (2.9) that

L3 =1+ [(cosh A — 1)/A*}(x,x' + x,x7). (2.12)
So far, all formulas apply parallelly for either the case of the

Liy.o=|6%+ x,e%p — L x%g |,
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Therefore for g, = diag(1,1, — 1),

L% =1+ [(cosh A — 1)/A%][(x,)* + (x,)%]>1,
(2.14)

so that we have verified the following theorem.
Theorem 1: For x: = x, 9% {x_}e#>, and y* are arbi-
frary quantities satisfying

(77771 = — (e7g,5)y", the matrices L =||L %],
determined by

e'ye =Ly’ (2.15)
form the elements of the defining (three-dimensional, ma-
trix) representations of the group SO'(2,1) or SO(0,3), de-
pending on whether g, 5 has hyperbolic or elliptic signature,
respectively, as outlined in (1.2).

Now, the standard interpretation of SO'(2,1) transfor-
mations, as parametrized by x%, is this: if x* is “timelike,”
x%x, <0—A = i@, the transformation consists of the usual
trigonometric rotation through & in the plane perpendicular
to x® If x¥is “null,” x,x* =0, (2.11) applies and we have
the odd case of L — I being nilpotent, (L —I)* =0. Of
course, if (2.11) holds with x* -0, then L = I. Finally, if x*
is “‘spacelike,” x°x, > 0, the transformation consists of a hy-
perbolic rotation through A in the plane perpendicualr to x“.

This standard parametrization has, however, a peculiar
property, the manifestation of which is somewhat different
for the two groups. For SO'(2,1), if the x s are such that

2 _

2 2 2
X, X'=Xx71 +x; —x3= — (2mrn)",

2.16
n=12,..=A=2nin, ( )

then L = ||L °;]| = 1. Thus, for this parametrization, all
points of the infinite sequence of hyperboloids
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x,x%= — (27n)? induce the identity of the group. An al-
ternative manner of stating this is that

X=X, 7% X x*= — 2mn)’=[e°] =0, (2.17)

and thus, e* with x of the nature described above, must be a
function of the Casimir operator

C: =y, v (2.18)
The elliptic case of the signature (-,-,-) is much simpler.
There with A = \/xax" = \/ —xt—x—x,A=i6, for
>0 as noted in (2.13b). This time, however,
6 = D«>x“ = 0. Notice that presently (2.12) takes the form

L3 =1—[(1—=cos 8)/0%](x} + x3), (2.19)

which implies L *,< 1. With the timelike and null cases pres-
ently absent, the transformation consists simply in the trigo-
nometric rotations through 6 in the planes perpendicular to
x“. However, these transformations have the peculiar prop-
erty that

2 2 2
— X, X" =x1 + x5 4+ x5 = (2mn)?,

n=0,12,..= 4 =2m7in, (2.20)

which reduces L, from (2.9), to I. Thus, with the x* parame-
trization of SO(0,3) matrices, all points of the infinite se-
quence of spheres — x,x” = (27n)” induce the identity of
the group, and also in the elliptic case the implication (2.17)
is valid, so that ¢* must be a function of the Casimir operator
of the group SO(0,3).

Il. THE “TANGENTIAL” PARAMETRIZATION OF
S0O'(2,1) AND S0O(0,3) MATRICES

The canonical Lie parametrization of the SO'(2,1) and
SO(0,3) matrices suffers two disadvantages: (1) the points
— x,x* = (27n)? all induce the identity of the group; and
(2) the explicit group composition law is rather involved.
We will propose now an alternative parametrization-—si-
multaneously for both the groups under discussion—which
eliminates the difficulties mentioned above, providing a ra-
tional parametrization of the matrices of the defining repre-
sentations of both groups.

There is a price to be paid for this: the new parametriza-
tion does not cover uniformly a// L matrices from (2.9) as
parametrized by the real x*’s.

We define new parameters {7 “}€%°> determined by

t% = [tanh(A/2)/A]x%, A:=x,x". (3.1)

Problems can arise with the %°*— % mapping when either
tanh(A/2)/A =0, or tanh(A/2)/A = «. The case A = 0,
if we consider the coefficient as lim, _, (tanh A/2/A) =,
causes no problems in the case of either signature, given by
(1.2). For hyperbolic signature A—0 reduces (3.1) to
t, =4x,, while for the elliptic signature, where
A=0&x, =0, A-0 implies ¢, =0. When A#0 but
tanh(A/2)/A =0 obviously A must have the form
A =2min,n=12,..= — x,x* = (27n)?, and this can oc-
cur for both signatures. This is a rather nice property of the
parameters ¢ all the points that induce the identity of
SO'(2,1) or SO(0,3) (apart from the point x* =0) are
mapped by (3.1) into a single point ¢ “ = Q.
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More troublesome is the case of A#0,
[tanh(A/2)/A] = o0, where A-2mi(n 4 1/2),
n =0,1,2,... . In this case finite t “ that correspond to finite x*
do not exist. Observe that this situation—which can occur
for both signatures—corresponds, according to (2.9), to

A-2mi(n+172), n=0,1,2,..
— X x%= (2m)’(n + 1/2)3,

LoPi= || — 8% +2(x%,/x x,)||= P> =1 (32)
Thus the case of L tending to the involution P cannot be
covered by finite ¢ “.

We will soon demonstrate a solution to this problem.
We prefer first, however, to consider in some detail those
elements of these groups that are covered by these param-
eters. We exclude the singular points by insisting that
A#27in, n = 1,2,..., and A#27i(n+ 1/2), n=0,1,2,... .
Under these circumstances (3.1) may be inverted to give

x* = Acoth(A/2)t", tanh’(A/2) =1t,t°,

1—1,t°>0, (3.3)

where we see that the set of such {¢“} fills up all of %7>. We
refer to this as the normal domain of the tangential param-
eters, ¢ “. This expression for x* may now be inserted into
(2.9) to realize our desired parametrization

(1 +2,27)6% + 2t,€"%5 — 2t “t,

Loy (t7) =
7 1—1,°

(3.4)

We note that if such an L “; is given, then ¢” may be deter-
mined by

4/(1 —15t%) =Tr(L) + 1, (3.5a)

41°/(1 — 1517y = €L, . (3.5b)
We will define the set £ as the set of all such matrices

L={L@")|L*; given by (3.4), {r°}e#>}. (3.6)

Next, we consider the set 4.7, of limits of the matrices
in the set .¢°, obtained via the limiting process

to=: 7% T,7°£0, AeR, {tVeR?, (3.7
L DLEP) = L (77|

= || = 8% +2(3°7,/7°T,)|, —1°7,>0,

(3.8)

where we note that the parameters {7 #}€%> are meaningful
only modulo proportionality

Te=AT7¢, Aed. (3.9)
Note also that
Tr[L(@E?)] = — 1, (3.10)

whereas one sees from (3.5a) that Tr[L(z?)]# — 1. The
eigenvalues of L(7”) are (1, — 1, — 1), while 7” is deter-
mined modulo proportionality by letting it correspond to the
eigenvector for the eigevalue + 1.

The matrices in 4.7 are important in the context of this
discussion, especially because they correspond to those ma-
trices L which have x” such that A = 27i(n + 1/2), ie.,
exactly those matrices that cannot be covered by the form
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L(t?). Comparing (3.8) and (3.2) we see that we can make
the identification

Te=x% —x,x"=[27r(n+1/2)]1%, n=0,1.2,..,

(3.11)
noting, of course, that
L*@f) =1,
The complete situation is then summed up by the following
which notes that:

F=LUJY (3.12)

does indeed cover all the matrices L “; from (2.9). We can
refer to the space .% as a quasigraded structure since the
value of Tr(L) for Le. ¥ distinguishes whether Le.% or of
4. As will be shown below, the product of two such L’s
may lie in either ¥ or 4.¥ in each of the possible cases
where the two members of the product are (1) both from .7,
(2) one from .¥ and one from 4.7, or (3) both from 4.7 .

Theorem 2: If the 3<3, real matrix L = ||L “]| is an
element of either SO'(2,1) or SO(0,3), depending on the
signature of g5, then there are only two possible cases: (i) if
Tr(L)#1, then L = L(t”)e.¥ may be considered as para-
metrized in the form given in (3.4), where {¢ "} is deter-
mined by (3.5) and the relation to the canonical parametri-
zation is given by (3.3); (i) if Tr(L)= — 1, then
L = L(77)ed.?’, parametrized as in (3.8), with7# being the
eigenvector for eigenvalue -+ 1, with the relation to the ca-
nonical parametrization given by (3.11).

A worthwhile picture of the (twofold) parameter space,
described by the 7 “’s and the 7 ’s, is obtained by envision-
ing the {r°} as 23, and the {7}, which are only defined
modulo a proportionality (of either sign) as a “closure” of
9% by the real projective sphere RP?,

analogously to (3.2).

IV. COMPOSITION LAWS VIA L(t?) AND THE BCH
PRODUCT

Consider now a product L(s*)L(t*) of two matrices
from L. If this product results also in a matrix from L, say
L(r*), then we can work out from (3.6) that

1 tu{ 2
v st , (4.12)
1—r,r (=5 (1 —1,17)
1 (1+s,t7)

= (55 + 17 + eBrg ¢ ).
L—rgrf (1 =585 (1— 1,17 B
(4.1b)

Therefore
@ a a3y
s+ 17 + €M s,1,

l+5,t#40=r" =
1 —}-spt"

(4.2)

This formula provides us with a very simple rational
composition law of the parameters from %7, which, at least
for sufficiently small s*’s and ¢“’s—such that
1 + s,¢%>0—describes the composition laws of the two
groups SO'(2,1) and SO(0,3) for finite transformations.

This result was mentioned in Ref. 5, in the case of the
orthogonal group SO(3) =S0(0,3), in vectorial notation,
and with the signature ( +, +, + ) in the form of
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r=s+t+sxt’ (4.3)
1 —st

which, in the neighborhood of the identity (s and ¢ small),
would seem to be a preferable alternative to the usual SO(3)
composition law spelled out in terms of Euler angles.®

When this formula was first established (see Ref. 6),
one of the authors was satisfied with its validity in a neigh-
borhood of the identity, only. However, in the context of this
present article, one is able to do much better, establishing
rational composition laws covering all elements of the
groups in question.

To see this, we rewrite (4.2) in a form suitable for taking
an appropriate limit:

=077 oi=14s5,1% Pri=sT4 14 ePspi,

=7, =0"— (1 —5,5") (1 —£,19). (4.4)

Inserting this form of »* into (3.5) we find that L “g(r?)
admits a limit as o —0, amounting to

im L (07 'F°) = — 8% + 2(FF;/77F,)€0.%, (4.5)

a0

while

145,950, P =s5"41"+ ePls,t,, (4.5b)

and

-7, 7 =(1=5,5")(1 —1,t7)>0.

If one prefers, the same result can be obtained more directly,
with greater effort, by computing the product L(s”)L(z*)
under the assumption that 1 4+ s5,7“ = 0.

Via a similar technique to that which just led to (4.5),
some work allows for the calculation of the composition
rules for any choices of matrices from the entire quasigraded
structure .Z = . UJ.Z.

Theorem 3: For the parametrization of the groups
SO'(2,1) and SO(0,3) given by {z“}, {7}e%?, with {77}
only meaningful modulo proportionality, via L(t “)e.¥” and
L(7%)ed ¥ as described in Theorem 2, there exists a simple
rational composition law with numerator and denominator
having nothing worse than products of the parameters for
any product of choices of matrices from ¥ = . Ud.¥,
which is given completely in Table 1.

Also in the table are listed the results of the next in-
quiry—into a Baker—Campbell-Hausdorff composition
law—since this composition, in the abstract Lie group rather
than with the 3 X 3, real matrices, also involves these same
(eight) cases.

Various “‘interpretative” comments concerning the ta-
ble are in order. The first is simply that it is clear that all
possible products of matrices from % are included. If we
specify as a “condition” the four quantities in the first col-
umn, namely 1 + s,z “when both L’sliein .¥,5,¢“ors, 7
when one is from .¥" and one from 4., and 5,7 “ when both
are from d.7’, we can see—very reasonably—that when the
condition does not vanish the product is in .Z, while vanish-
ing of the condition ensures that the product is in 3.%°. [One
easily verifies that each of the r®s satisfies 1 — r, >0,
{r}ez??, as needed for L(r*)e.¥, while each of the 7s
satisfies — 7,7 > 0, {F*}e%?, as needed for L(7*)ed.Z . As
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well, one notes that the #*’s given are independent of propor-
tionality transformations of any 3’s or 7*'s they may con-
tain.)

As well, comments concerning the Baker—Campbell-
Hausdorff results listed in Table I are now in order. By x[#7]
or x[7”], we mean the elements of the abstract Lie algebra
referred to in (2.1), but with the x, taken as functions of
either 1# or 7°:

x[t?]: = [A/tanh(A/2) 11,97, {t°}eR?,

tanh?(A/2) =t,t% 1—1,t%>0, (4.6)
x[7°): = A]im x[tP] = [(#, /=TI ]

-+ oo
{FYe#??, —~17*>0. (4.7)

Since these two sorts of quantities x specify all the ele-
ments of the respective Lie algebras of the (abstractly de-
fined) groups SO' (2,1) or SO(0,3), their exponentials con-
stitute the very elements of the (abstract) group, again
parametrized by our ‘“‘tangential” parametrization. There-
fore it is not surprising that we are able to completely express
the products of these exponentials in terms of the parame-
trized form of the group composition law. The representa-
tion should be contrasted with the matrix representation ob-
tained via Theorem 1, (2.15). The two representations are
adjoint one to another, explaining the inversion of order in
the BCH composition rule relative to the other one. This
property is seen by rewriting (2.15) in the current notation,
giving

ex[l”]}/ze—x[l”] =Laﬁ(tp)‘yﬁ, (4'8)

with similar expressions where one or both of the x[7] are
exchanged for x[77]. Assuming that 1 + 5,7 “#0, we may
now write

ex[r”]ex[s”].},ae —xls”), = xle"] = aﬁ (s p)exll"]yﬁe—x[t"]

=L%(s”)L%: (179,
(4.9)

demonstrating, for this case, the desired statement. The oth-
er cases follow in the same fashion.

As well, now, we may use the composition rule from
Table I to obtain

APPA™ =97, (4.10a)
where
A= A(tPs°); = e~ 17 lx Pl exls?l £, (4.10b)

Since A therefore commutes with all ¥ it must be a function
of the Casimir operator y,“.

In fact, we will now give a simple argument to show that
A isidentically equal to 1, which will verify the BCH entry in
the first line of Table 1. Because all the various lines of Table
I were obtained by a sequence of limiting transitions from
the first line, it is clear that a similar sequence of limiting
transitions may be repeated with respect to the above argu-
ment, leading in turn to each of the other BCH entries in
Table L. In order, now, to verify that A is equal to 1, we first
recall some essential facts from combinatorial group theo-
ry.’
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Let x and y be generators of a free associative algebra.
Then, the Magnus bracket {:,-} is defined as follows:
Xy} ={1y}:=y and for n=01.2,..,
{x" ' y}: = [x,{x" p}]. If f(x) is a formal series with coef-
ficients from some field of numbers of characteristic zero (in
practice # or ), f(x) = X*_,a,x" then {f(x),p} is an
abbreviation for £=_  a,{x",y}. For example, we have

)

{e/lx,y}z Z _/1'nTn[x[x...[x’y]...]=elxye—/lx’
" (4.11)

AeZ (the Schwinger formula). This definition allows us to
state Magnus’ formula:

d

L &0 X(1)er ™,

dt (e
X 1

X(1): = {" — 1 x] =f di{e* i}
X 0

1
=j dA ePxe=*, A, teR. (4.12)
o

Then, in the case in question where the x(¢) are linear and
homogeneous in the generators »* the x(¢) are also linear,
homogeneous, and therefore so will be the corresponding
X(1), having the form

X(t) =X, ()Y (4.13)
where for each 1, {X, (2) }e#*.

Similarly, defining Y(¢) by

4 e =Y ", (4.14)

dt

the completely analogous argument tells us that when the
x(t) are linear and homogeneous in the generators ¥~ then
so will be Y(¢), taking the form

Y(r) =Y, ()Y,

where for each 1, { Y, (1) }e#>.
We now rewrite the expression (4.10b) for A so that
el = A(er,57)ex ], (4.16)

and suppose that the ¢ ’s are arbitrary analytic functions of #.
Then also the #™s are analytic functions of ¢, all exponents
being linear in *’s; the s*’s we treat as constants.

By differentiating (4.14) with respect to ¢ and using
(4.13), it follows that

(4.15)

d .
AX, 7" =— A+ AKX, 7" (4.17)

and consequently 0 = d /dt, A = t *(dA/3t*). This can be
true for every t ™ (¢) iff JA/0t* = 0. Similarly, consider
(4.16) with ¢ “ independent of ¢, and with s™’s arbitrary ana-
lytic functions of ¢. Differentiating (4.16), it follows that
with ¥, and Y, being scalars

4
dt
and consequently, O0=dA/dt, A =35%(dA/35") &0
= dA/ds”. Therefore A in (4.16) cannot depend on either
t* or s° Since this is true, by specializing (4.16) for

AY, V" =—A+AY_p" (4.18)
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t*=0=s% we find A = 1, which completes our proof of
the Baker-Campbell-Hausdorff composition law,® which
we restate in the form of the following theorem.

Theorem 4: In the parametrization of SO’ (2,1) and
S0(0,3) {r°}e%* and { t “}e#> modulo proportionality,
the realization of the group elements via e*!*") and ¢**"! ad-
mits the Baker-Campbell-Hausdorff-type group composi-
tion law for all possible products as given explicitly in Table
L

An interesting corollary, analogous to the situation ori-
ginally stated in (3.2), i.e., L 2(¢?) = I, is now given.

Corollary:

e = 1 (4.19)

The corollary follows from the seventh line of Table I, choos-
ing 3* the same as 7%, we have 7 = (1,17 ~' e 1,1, = 0,
independently of the precise magnitude of 7 %, verifying that
these elements are involutions in the abstract Lie group as
well.

V. SOME PROPERTIES OF ANALYTIC CURVES ON THE
GROUP MANIFOLDS

Generalizing a comment at the beginning of Sec. 11, if
we choose x, = x, (1) to be arbitrary (real) analytic func-
tions of ¢, then the realization via (2.15) of elements L “5(#)
of the appropriate group, SO' (2,1) or SO(0,3), describes an
analytic curve on the manifold of the defining, three-dimen-
sional representation of the group, while ¢*” similarly gen-
erates the “‘same” curve on the abstract group manifold.

Using the Magnus formulas (4.12) and writing X (1), as
was done there, for the quantity that gives the rate of change
along the curve, we have

1
X(t): = [i e"“’] e " =x, J- dA e e =
dt o

1
=X, U a’/lL“ﬁ(,i)] Yo=x,N0% (5.1)
0

where the matrix N = || N %, || is easily computed from the
explicit form of L % given in (2.9):

N =TI+ [(coshA —1)/A%IM + [(sinh A — A)/A3 | M?
=||6°5 + [(cosh A — 1)/A%]x,€%;
+ [(sinh A — A)/A%] (A%%; — xx,)|l,

remembering that A = /x_x°.
Because N shares eigenvectors with M, one easily sees

(5.2)

that N  has the eigenvalues (1,(e* — 1)/A,
(e~ * —1)/ — A), from which we see that
det(N) = (2 sinh(A/2)/A), (5.3a)
Tr(N) =1+ 2(sinh A/A). (5.3b)

Also we notice that in the limiting case A—0, we have
N=6% + §x, %5 — § x7x4]l,
(N—D?=0, det(N)=1, Tr(N)=3, (5.4)

which is only interesting for SO' (2,1) since for SO(0,3),
A = 0=x% = 0. We also notice that det(N) is positive, and
therefore N ~! exists, except for the singular cases of
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A =2min, n = 1,2,... . In these singular cases, we have

N=| —x"xz/Q2mn)?||, A=2min, n=12,.. .
(5.5)

Outside of these singular cases N ~ ' exists, and is readily seen
to amount to

N“:I—LM——L(I— sinh A/A ) 2
2 A? 2(cosh A — 1)/A°

1 1 A A
=||6% — —x, €%y — — (1 - coth(——))
” B xp B 2 2

2 A?
X (A%8% — x%)||. (5.6a)
Notice that then in particular
Lirr(l)N" = 6% — 1 x,€%5 — 5 x°xg4]|. (5.6b)

All of the results above concerned with X(¢) will assume
much simpler form if we represent X(¢) in terms of the tan-
gential parametrization; i.e., X [?"] from (4.7), with corre-
spondingly the parameters 1* or #* interpreted as arbitrary
analytic functions of re%?. By substituting from (4.6) into
(5.2), a straightforward computation leads to the rather
simple result stated in the following theorem, along with the
results obtained by also setting in these formulas
te(t) = A1, A =const, 0 > —1,1%> 0, as before and
executing the limit A — oo of ,K 7.

Theorem 5: For the parametrization of the groups
SO' (2,1) and SO(0,3) given by {r*}e#> and {r*}e®?
modulo proportionality, the analytic curves on the group
manifold generated by taking t* =% (¢), or “ (1), teA, as
arbitrary, (real) analytic functions of ¢ and using
exp{x[27(t) ]} orexp{x[# ()1} to generate analytic curves
on the group manifold, we may explicitly write the rate of
change along the curve—the generating vector field, X(¢)—
in the linear, homogeneous form

X[tP()]: = [% ex[rvun] e~ _ i (K ya
(5.7a)
or
X(0)={2 e"“p‘”]} e 0l 7 R 4
(5.7b)
where
K:=||K%|| = I[2/(1 = £,67) ] (8% + 1,€%3) |
(5.82)
and
K =K% = 121,6%,/( —1,7%)]. (5.8b)

A few observations about the algebraic structure of the
matrices K and X are now needed. Similarly to M from
(2.5), the matrix M": = ||¢,€* ||, fulfills the Hamilton-
CayleyequationM * — 1,t* M’ = 0, havingthuseigenvalues
(0,/1,1% —/t,t%). Because K shares eigenvectors with
M, it follows that the eigenvalues of X are

( 2 2(1 4+ 1,19 2(1_,/1,,[“))
1—t ’

1—1t,t° P —1,t”
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and therefore det(K} = 8/(1 —¢,¢ )2 thus, in the normal
domain of {¢}, det(K) is positive, and the matrix K ~' ex-
ists. [On the other hand, the matrix K, admitting an eigen-
value of zero, corresponding to * serving as the eigenvector,
has det(X) = 0.] One easily sees that the explicit form of
K~'is

K~ = [15(8% — 1,%s — 1), (5.9)
this quantity being simply quadratic in the functions
" =17 (1). Consequently, the equations X, (7) = K",
can be inverted with respect to ¢, in the simple form of

ia :XIJ(!)K N l/}a = %X/J’(t)(aﬁa - ’peﬁpd - [Bta) .

(5.10)

These relations are of interest for many reasons.

Among other things, Eq. (5.10) is crucial for attempts
to solve the problem: given arbitrary analytic functions
{X, (t)}%7°, can we determine x(#) = x, (#)y* such that

_d_ ex(:) — X.z (t)yaex(l)’
dt

This entire problem we will save for later reports. In the
present paper we will only investigate the case of X, and X,
being colinear, i.e., there is some p(r) #0 such that

X, () = (W/w)X, (1) & X, =u(D)Y,,
{Y,}e%?3, independent of ¢.

Under the conditions of (5.12) the solution to the prob-
lem stated in (5.11) simply amounts to

0 =17 (5.1

(5.12)

x(t) =v{(1)Y,y* with v(z)::f dt’ u{t’). {5.13)
(4]

On the other hand, using the presentations in Theorem
5, we can easily establish the conditions for the colinearity
expressed in (5.12). Using the expressions for K ~', we find
that linear independence of X, and X, is expressed by

Yo =X, X, = [8/(1 — 1,t")2]K ' %L1,

" (5.14)

It follows that X,,, X, are colinear iff Lyl are colinear.
In addition, setting (5.14) (1) = At* (), —t, >0,
A = const, and executing the limiting transition A - «, we
obtain

Yo = ePX,X, = (2/1,1°) W1,

W.=e,;1%"17, (5.15)

which could also have been directly derived from (5.8b).

Therefore, (X,,, Ya ) are colinear [ff the Wronskian W
vanishes, implying that the curve #* = 7 (¢) in %> must be
contained in a plane through the origin of Z°.
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VI. CONCLUDING REMARKS

The main results of our paper can be summarized as
follows. Elements of the defining representation of the group
SO(0,3) or SO'(2,1) constitute the set .¥ = ¥UJLY,
where the elements of .¥° can be parametrized by {¢* }e%?,
fulfilling the condition (3.3),1.e., 1 — ¢, > 0 (“the tangen-
tial parametrization” ), while the members of 4.¢", which
can be obtained from .% by a limiting process, are parame-
trized by all directions of straight lines in 472 in the case of
SO(0,3), or by the directions A7* such that ?";a <0 in the
case of SO' (2,1). The group composition law of our param-
eters is rational and very simple (Table I). By using this
parametrization we are also able to express the Baker—
Campbell-Hausdorff formula in a concise form. Finally,
note that some ideas of the present paper have found general-
izations in work on quaternionlike algebras.’

'L. Infeld and J. Plebanski, Acta Phys. Pol. 14, 41 (1955). 1. Bialynicki-
‘Birula has generalized the ideas of this paper in his M.S. thesis (University
of Warsaw, 1956) to the case of an arbitrary number of 2# canonical vari-
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The theory of screws: A new geometric representation for the group SU(1,1)
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Hamilton’s theory of turns, which gives a geometrical description of the elements and structure
of the compact group SU(2), is generalized to a theory of screws for the noncompact group
SU(1,1). Group elements are pictured as geometric objects in a three-dimensional Minkowski
space, and the composition law is reduced to a geometric operation on them. A new
classification of elements of SU(1,1), leading to an interesting structural result about the group

manifold, is introduced.

1. INTRODUCTION

The unitary unimodular group SU(2) is the simplest
example of a non-Abelian compact Lie group with a simple
Lie algebra. It is of fundamental significance in quantum
mechanical problems, being basic to the quantum theory of
angular momentum as the covering group of the rotation
group SO(3)." It also plays an important role in theories of
internal symmetry for nuclear and particle physics; and it is
of significance in polarization optics as well.” In the context
of angular momentum theory, it is often convenient to para-
metrize the elements of SU(2) by Euler angles, which makes
the irreducible representation matrices in a suitable basis
easy to deal with. The group composition law, however, is
rather cumbersome with this parametrization. On the other
hand, the use of homogeneous Euler parameters simplifies
the expressions for group multiplication to some extent, but
involves the use of nonindependent parameters.

All these are of course algebraic ways of describing the
elements and the composition law of SU(2). It is remark-
able, but unfortunately not too well known, that as long ago
as 1853 Hamilton had invented a geometrical or pictorial
way of representing SU(2) elements and their multiplica-
tion, which is extremely elegant and gives one a direct and
vivid grasp of the structure of SU(2). This is the so-called
method of turns.®> To appreciate Hamilton’s method, let us
first recall the much simpler case of the Abelian group of
translations in Euclidean three-dimensional space. Each
translation is representable as a vector in space, only the
direction and magnitude being significant, and the location
irrelevant. The composition of two translations is given by
the head-to-tail parallelogram rule of vector addition; and
taking the inverse amounts to reversing direction. In Hamil-
ton’s theory of turns, we have a generalization of such a
picture from the Abelian translation group to the non-Abe-
lian SU(2). Instead of vectors in space, we deal with directed
great circle arcs, of length <, on a unit sphere § 2in a Eu-
clidean three-dimensional space. Two such arcs are deemed
equivalent if by sliding one along its great circle it can be
made to coincide with the other. Equivalence classes of such

*) Present address: The Institute of Mathematical Sciences, C.1.T. Campus,
Madras 600 113, India.
® Jawaharlal Nehru Fellow.
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arcs are called turns, and elements of SU(2) can be repre-
sented by them. Perhaps the most remarkable feature is that
the noncommutative multiplication law of SU(2) can be
translated into the language of turns thus: given two ele-
ments of SU(2), slide the corresponding representative
great circle arcs on their respective great circles till the head
of the first coincides with the tail of the second. Then the
product element is represented by the turn determined by
the great circle arc from the tail of the first to the head of the
second arc. Inverses of elements go into reversed turns. A
detailed account of Hamilton’s work can be found in the
monograph of Biedenharn and Louck.*

The purpose of this paper is to show that Hamilton’s
method can be generalized from the compact SU(2) to the
noncompact group SU(1,1) in a very interesting way.’ This
group is the simplest non-Abelian noncompact Lie group
with a simple Lie algebra, and shares with SU(2) a common
complex extension. Like SU(2), SU(1,1) too is of great im-
portance in many physical problems. Thus one may mention
the theory of axially symmetric optical systems in first-order
Fourier optics®; the group SI(2,R) of real linear canonical
transformations in one pair of canonical variables, which is
isomorphic to SU(1,1); and the group of Bogoliubov trans-
formations on one creation-annihilation operator pair, rel-
evant for squeezed states.’

We shall use the term “screws’ for SU(1,1) in place of
the turns of SU(2). In analyzing the geometrical properties
of screws and the description of the SU(1,1) group structure
using them, some important differences as compared to the
SU(2) case will be evident. While the carrying over of Ham-
ilton’s ideas from SU(2) to SU(1,1) is thus not trivial, it is
gratifying that it can in fact be done.

The material of this paper is arranged as follows. In Sec.
II we give a brief review of the method of turns for SU(2).
Section III develops the method of screws for SU(1,1) in
detail, paying special attention to those features that distin-
guish it from SU(2) but at the same time guided by the
SU(2) case. The concluding section (Sec. IV) collects some
pertinent remarks and points cut some possible applications
of our new method.

Il. REVIEW OF TURNS FOR SU(2)

In this section we review very briefly the theory of turns
for SU(2), in a form suitable for the intended extension to
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SU(1,1). While the content is essentially the same as in the
account given in Ref. 4, it is expressed in a form convenient
for our purposes.

As is well known, any matrix # in the defining represen-
tation of SU(2) {any ueSU(2)] can be written in terms of
homogeneous Euler parameters and Pauli matrices as

(2.1)
(the unit matrix accompanying g, is omitted ), where g, and

a are a real scalar and real Euclidean three-vector con-
strained by

u=a,— iaqg

(2.2)

In this way, elements of SU(2) correspond one-to-one to
points on S°. The constraint (2.2) suggests that we choose
any two unit vectors n, n'eS 2 and set

@ +aa=1.

(2.3)

for then, if 8 /2 is the angle between n and n’, and a is the unit
vector alongn An’,

! ?
a,=nn', a=nAnj

a,=cos 0/2, a=asinf/2, 2.4)

and condition (2.2) is obviously satisfied.
We are thus led to define, for any n, n’eS %, the foliowing
SU(2) element A(n,n’):

A(nn') =nn’ —inAn'c. (2.5)

One can easily convince oneself that for any a,,, a obeying Eq.
(2.2), choices of n, n’ can certainly be made so that Eq. (2.3)
will be valid. Thus every ueSU(2) is obtained by making all
possible choices of n and n’ in 4(n,n’).

The geometrical meaning of the element 4 (n,n’) is clari-
fied by computing the element R (4 (n,n’))e SO(3) that cor-
responds to it under the SU(2) -SO(3) homomorphism.
We find:

A(n,n’)ncA(n,n’) "' =n"g,

n” =2nn'n’ —n, (2.6)

nn’ =n“n", nAn =nAn".

Thus R (4(n,n’)) is a right-handed rotation about n A n’
as the axis with zwice the angle (<) enclosed between n and
n'. In particular, R (4(n,n")} does not rotate n into n’ but
overshoots it in the plane of n and n’ ton”. On n’ the effect is
given by

A(nn)neA(n,n’) "' = (2n"n"n" — n')+o, 2.7)

n” being as in Eq. (2.6).
The construction of 4(n,n’) enjoys the following prop-
erties:

A(nn’) "' =A(n'n), (2.8a)
A(n'n")A(nn’') =A(n,n"). (2.8b)

(Here n, n’, and n” are independently chosen points on S2.)
In addition, A (n,n’) is unchanged if both n and n’ are sub-
jected to a common rotation about n An’. This SO(2) invar-
iance property motivates the following equivalence relation:
joining n and n’ by a great circle arc of length <, this arc is
equivalent to all other arcs obtained by sliding the given arc
on its great circle. An equivalence class of arcs is called a
turn.

Based on Eqgs. (2.8), the SU(2) group operations can
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immediately be given a geometrical description. Each
ueSU(2) (other than u = + 1) corresponds to a unique
turn. For u = 1 we take the null turn, i.e., any n = n’eS. For
u= — 1, any great semicircle will do, and they are all
deemed equivalent. The inverse of ¥ = A(n,n’) corresponds,
by Eq. (2.8a), to reversing the sense of the turn but retaining
the same great circle. To compute the product «'u for arbi-
trary u’ and u, we remark that since any two great circles on
S ? definitely intersect, we can choose n, n’, n”€S ? such that
u=A(nn"), u’ = A(n',n"); then by Eq. (2.8b),

uu=An',n")4A(n,n’) = A(nn"). (2.9)

Thus the turn for the product is indeed obtained by the geo-
metrical operation described in the Introduction.

We remark that while the geometrical construction is in
a three-dimensional Euclidean space (more precisely, on an
S? therein), we are able to represent SU(2) elements, not
merely those of SO(3), faithfully by turns.

To conclude this section, we return to the geometrical
meaning of A(n,n’) revealed in Egs. (2.6) and ask: is there a
simple expression for an element B(n,n’)eSU(2) such that,
unlike with 4(n,n’), R (B(n,n')) will be a rotation about
n An’ which takes n precisely to n’ through an angle <#? The
properties of A(n,n’) tell us that we must take

B(nn') =A4A(n,(n+n')/|n+n’'|)

={2(14nn)] "} 1+ 4(n,n")), (2.10)
A(n,n') = (sgnnn’)B(n,n"),
where n” is as in Eq. (2.6). Then we find
B(n,n)n-gB(n,n’) "' =n'o,
B(n,n')nAn«cB(n,n’) "' =nAn'c. (21D

As is to be expected, B is not unambiguously defined when
n'= —n. We may remark that this construction of
B(n,n")eSU(2) is useful in computations of the Pancharat-
nam-Aharonov-Anandan phase® for two-level quantum
systems, as shown in Ref. 2.

lll. GENERALIZATION OF TURNS TO SU(1,1): THEORY
OF SCREWS

We now show how a geometrical method can be devel-
oped for the noncompact group SU(1,1), similar in spirit to
turns for SU(2). For convenience of exposition, this section
is divided into subsections.

A. Notational preliminaries and definitions

The defining representation of SU(1,1) consists of two-
dimensional complex pseudounitary unimodular matrices of
the form

a B
A= (B* a*)’
detd=lal*—|B1*=1,
Afod =0,
The geometrical constructions to follow will be in a three-
dimensional Minkowski space .# with vector indices
a,b,...=0,1,2 and diagonal metric 7, with signature

( —, +, + ). By adjoining factors of i to two of the Pauli
matrices, we define the matrices p,, by

(3.1)
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Po=03 p)=I10y, p,=1I0,. (3.2)
Then

PaPs = — Map + i€ap P> (3.3)
where €,,. is the Levi-Civita symbol with ¢,,, = 1. For vec-

tors x, y in .# with inner product x-y = 7,,x’, define the
cross product z = x Ay through

(3.4)

It is useful to introduce three unit vectors ¢, along the coor-
dinate directions in .# . For them we have

Za —_ €abcxbyc'

ea 'eb = nab’
e, Ne, =€,,°..

(3.5)

The following identities are immediate consequences of
these definitions:

xyANz=xAyz=yzAx (3.6a)
xAN(yANz)=xy z—x-z ), (3.6b)
xpyp=—xy+ixA\yp; (3.6¢)
(x9) — (xAp)? = X%y (3.6d)

wx yNz4+wy zARx+wz xANy=(xyAz) w
(3.6e)

The last identity arises by expanding x A (wA ( y Az))intwo
different ways.

For a real scalar A and a real vector ¢ in .#, consider the
matrix

) A+

A—/1+l'u’p—(—,ul—i,u2
It is clear upon comparing with Eq. (3.1) that AeSU(1,1) if

detd=A*—ppu=1, (3.8)
and, conversely, any 4eSU(1,1) can be expressed in the
form (3.7) for unique real A, u satisfying (3.8). This is the
analog of the use of homogeneous Euler parameters for
SU(2).

The SU(1,1) to SO(2,1) homomorphism is easily set
up. If B, B’e SU(1,1), from Egs. (3.3) and (3.6), it follows
that

1 . 2
—H i ) (3.7)

A—iu®

Bx-pB ' =x""p,
x“=A(B)“, x>,

(3.9)
A(B)eSO(2,1),
A(B'YA(B) =A(B'B).
Therefore
BA+iup)B '=A+iup,
, i p pep (3.10)
u=AB)u.

Thus under conjugation of 4 = A + iz-p by B, the scalar A is
invariant while the vector u undergoes the SO(2,1) transfor-
mation determined by B. The explicit expression for A(B) in
terms of B can be easily worked out, but we do not need it in
our analysis.

B. Classification of finite elements of SU(1,1): The
exponential map

The representation (3.7) can be used to classify
SU(1,1) elements in a convenient form. A vector ue.# is
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timelike (¢), lightlike (/), or spacelike (s) according to
whether u“u, is negative, zero, or positive. We will say
A=A+ iupeSU(L,1) is of type ¢, /, or s according to the
nature of x. This accounts for all elements except 4 = + 1
when g vanishes. In the ¢ and / cases, a further split into
positive and negative types depending on the sign of x° is
possible. This classification results in five nonintersecting
subsets of SU(1,1) whose union along with + 1is SU(1,1).

Since pu’u, = A2 — 1, the type of an element is fixed by
A =1tr 4. Assuming u does not vanish identically,

—1<i<l1 & Aoftypet,
A= +1 & Aoftypel; (3.1
A< —lord>1 <& Adoftypes.

From Eq. (3.10) it follows that the type of an element is
invariant under conjugation by any SU(1,1) element. For
the ¢ and / cases, the positive or negative nature is also pre-
served.

This classification of finite SU(1,1) elements is to be
contrasted with a similar classification of elements in the Lie
algebra of SU(1,1). The distinction is important because
there are finite elements in the group that do not lie on any
one-parameter subgroup at all. This is the meaning of the
statement that SU(1,1) is not of exponential type. The expo-
nential map takes the Lie algebra of SU(1,1) into a subset of
the SU(1,1) group manifold. The complement of the range
of this map can be easily characterized. The one-parameter
subgroups of the types 7, /, and s (with parameter 7) are

0<T<2m, u'= —1;
1w =(); (3.12)

A (u;7) = cosh 7 + iu-p sinh 7, w=1.

A, (u;7) =cos T+ iupsinr,

A (u,r) =14 iupr, 7€R,

TeR,

Upon comparison with the classification of SU(1,1) ele-
ments, we see that the range of the exponential map consists
of all elements of type #, elements of type / with A = 1, of type
swith A > 1, and the two elements + 1. The complement of
this range is therefore

& = {/ type withA = — 1}
U{s type with A < — 1}. (3.13)

In short, A =1 tr 4< — 1 and 0 implies that 4 does not
lie on any one-parameter subgroup; nevertheless A4 itself can
be classified. We may also note that if 4e®, then 4 ~'e® as
well.

In the sequel we will see the importance of this classifi-
cation of SU(1,1) elements for the theory of screws.

C. Definition of the screw

Guided by the definition of turns for SU(2), for any two
real three-vectors x,ye.# we define a complex two-dimen-
sional matrix

A(xy) =xy+i xA\yp. (3.14)
From the identity (3.6d) we see that
det A(x,p) = x*2. (3.15)

Since 4 (x,y) is of the general form (3.7), we see that it is an
element of SU(1,1) if and only if x*y> = 1. That is, both x
and y must be spacelike or both timelike, and have reciprocal
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norms. Henceforth we restrict our attention to spacelike vec-
tors; the reason for this will be clear when we study the com-
position of screws. We next use the freedom of reciprocal
scalings of x and y to arrange them both to be unit spacelike
vectors.

In .# define the single-sheeted spacelike unit hyperbo-
loid

S={xpxx=(x"2+ ()2 — (x")?* =1}, (3.16)
The role of S'? on which turns were defined for SU(2) will
now be played by . We know from Egs. (3.14) and (3.15)
that

x,yeX = A(x,y)eSU(1,1). (3.17)

We wish to prove the converse: any 4eSU(1,1) is of the form
A(x,y) for suitable x,y on Z:

A=A +iupp=Axpy)=xy+ixAyp. (3.18)
If this is to be so, evidently, both x and y must be Lorentz

orthogonal to u, and also lie on 2. Therefore for each y we
define

C(u)=1{xjxx=1, px=0} (3.19)

Clearly % (u) is the intersection of 2 with the plane
through the origin orthogonal to x. For p of type ¢, /, or s,
% (u) consists, respectively, of a closed ellipse, a pair of
parallel disjoint infinite straight lines (generators of £),ora
pair of disjoint infinite hyperbolas.

Theorem: Given any A =4 + iu-peSU(1,1), we can
choose x, ye¢ (1) such that A(x,y) =A + iu'p. More-
over, either x or y can be chosen arbitrarily on % ( 1), the
other being then uniquely fixed.

Proof: Since our entire treatment is manifestly SO(2,1)
covariant, and under conjugation we have the behavior given
in Eq. (3.10), we can with no loss of generality put i of each
type into a convenient standard configuration, and then car-
ry out the construction.

A of type r: We can take

pu==¢te, &=sinf, A=cosf, 0<0<2m, 6O+F#
(3.20)
Then
C(pw)={xx*=0, (x")»¥+(xH2=1}
= {(0,cos @, sinp)|0<p <27} (3.21)

If x, ye% ( 1) correspond to parameter values ¢, ', respec-
tively,

A +ipp=A4(xy)

p=xANys
p—¢' =0

Clearly, if € is known, either x or y can be freely chosen on

% ( ), the other is then uniquely fixed.
A of type I: We can set

A=xy, (3.22)

pu=E€(e+e;), A=¢ €€ =11 (3.23)
Then % ( ) is a pair of generators of 2:
() ={xx*=x% (x")?=1}
={(g,6,a)|aeR, 6= + 1}. (3.24)

By taking x = (2,8,a) and y = (&',8',a"),

1003 J. Math. Phys., Val. 30, No. 5, May 1989

A+ipp=A(xy),

8 =¢ ad —add=c¢. (3.25)
If € and € are known, any choice of (a,6) leads to unique
(a',6") and the converse. If € = 1, x and y are on the same

branch of ¥ (u);if e = — 1, they are not.
A of type s: We can take

u==¢e, E=esinhf, A=ecosh
e= +1, feR, & #0.
Then % ( 1) consists of two branches of a hyperbola on X:
C(pw)={xx*=0, (x")?—x"*=1}
= {(&sinh %, & cosh %,0)|7<R,

(3.26)

5= +1}. (3.27)
By choosing parameters 8, 7 for x and &', %’ for p,
A4+ipp=Axy)=68 =€, 5—7n' =< (3.28)

Once again, either x or y can be freely chosen on % ( i), the
other being then completely determined. Ife = + 1,xand y
lie on the same branch of ¢ ( u), otherwise not.

This completes the proof, except for the remark that for
A= + 1,wecansetx = + yon X and then choose x freely,
ie.,

xeZA(x,+x) = + 1. (3.29)

We are now able to define a screw precisely. Notice that
with4 =4 + ju-peSU(1,1), the SO(2,1) “rotation” A(4)
leaves uc.# invariant, and alters only vectors in the plane
orthogonal to u. By borrowing the familiar SO(3) language,
we can say that A (4) is a Lorentz rotation about . as axis. A
screw is then an equivalence class of ordered pairs of points
(x,p) on 2, the equivalence being with respect to common
SO(2,1) transformations of both x and y about x A y as axis
and, in case x A\ y is not of type ¢, the transformation x - — x,
y— — yas well. Since 4(x,y) is clearly invariant under such
transformations, it follows from the above theorem that
there is a one-to-one correspondence between screws and
SU(1,1) elements, determined by Eq. (3.14). Given x,pe3
with x# + y, there is a unique % ( ©) on which x and y lie,
and then the equivalence is with respect to motions along
% (u) induced by SO(2,1) rotations about 4 = x A y, along
with the “reflection” x - — x, y— — yin casey is not of type
t. For A = 1, we have the “null screw” given by (x,x) for any
xe¥; and for A = — 1, any pair (x, — x) can be used.

D. Screws as directed arcs on X

We have just defined a screw as an equivalence class of
ordered pairs of points (x,y) on 2. One may wish, analogous
to turns for SU(2), to define a screw as (the equivalence
class of) the directed arc from x to y along € ( u = x Ay).
However, in the proof of the theorem of the previous subsec-
tion, we found that among /- and s-type elements of SU(1,1),
there are situations when x and y have to be chosen on dis-
tinct branches of ¢ ( ). Now we see that these elements are
precisely the ones in ®CSU(1,1), the complement of the
range of the exponential map. So at first sight it appears that
for elements in ®, screws cannot be visualized as connected
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arcs on 2. Thereis, however, a way of overcoming this prob-
lem, which does not exist for turns for SU(2). The clue is
that 4 and — 4 in SU(1,1) share the same % ( i), and if
Ae®, then — A¢P. Hence, if AeD, the ordered pair of points
corresponding to — A can definitely be connected by a di-
rected arc along % ( g). This leads to an alternative defini-
tion of a screw.

A screw is a pair consisting of an equivalence class of
connected directed arcs along a % ( i), the equivalence be-
ing with respect to SO(2,1) transformations that map
% ( 1) onto itself and with respect to reflection if u is not of
type #; and a flag that can take the values 4+ 1. Given
A = A(x,p)¢®, its screw is (the equivalence class of) the
directed arc from x to yalong % (x A y), with the flag + 1;if
however 4 = A(x,y)e®, then the screw is represented by
(the class of) the directed arc for — 4 = A(x, — y)¢®, with
the flag — 1.

We shall return to this use of the flag after discussing the
geometrical composition procedure for screws.

E. Composition of screws

From the representation (3.7) for a general 4eSU(1,1),
and the properties of the matrices p, we can see that passage
to the inverse corresponds to reversing the sign of z but leav-
ing A unchanged:

A=A+ipp=A4 '=A—iup. (3.30)
It is then clear that, given the screw for 4, the screw for 4 ~'
is obtained by interchanging the entries in the ordered pair of
vectors (x,p), x and ye% ( i), or equivalently by reversing
the directed arc without altering the flag.

To develop a geometrical rule for the composition of
screws, we first give an algebraic result following from the
construction (3.14), the form of which is suggested by the
result (2.8b) in the SU(2) case:

xyzed: A(z,p)A(x,z) = Z2A(x,p). (3.31)

The proof is quite straightforward, and involves judicious
use of the various identities (3.6). In fact, the precise con-
struction of 4 (x,y) in Eq. (3.14) was motivated by the desire
to have the result (3.31). The idea now is to see if (3.31) can
be exploited to convert the rule for composition of any two
SU(1,1) elements into a geometrical operation on Z.

If two elements 4,4 'eSU( 1,1) are expressed in the form
(3.7), their product can be put into the same form:

AHZA,A:(A«,—Fl;ll"p)(l‘*‘lp'p):/l”+i/l”'p,
A"=A"A+u"u, (3.32)
lun =A’H+Alu,‘—,u’/\ﬂ
On the other hand, if in Eq. (3.31) all three vectors x,y,z are
chosen on X, then both 4(x,z) and A(z,y) will belong to
SU(1,1) and

x,,2ex: A(z,y)A(x,z) = A(x,p). (3.33)

We can conclude that if, given the two general elements A4,
A’eSU(1,1), wedetermine € ( 1) and ¢ ( ') and find that
they intersect, we can then choose ze€ ( £)N%E (u’); from
Sec.III C we are then assured that xe% ( 1) and ye% ( ¢')
exist uniquely such that 4 = (x,z) and 4’ = A(z,y). Then
A'A is determined by Eq. (3.33): the ordered pair for 4’4

1004 J. Math. Phys., Vol. 30, No. 5, May 1989

consists of the first member of the A pair and the second
member of the 4 ' pair, in that order. However, unlike the
SU(2) case where we know that any two great circles on S?
definitely intersect, in the Lorentzian geometry of .# it does
sometimes happen that € ( ) NE (¢') = ¢! We are thus
led to the question: whenis € (u)NE (u') #¢?

In general, if two vectors u,u'c # are given, assumed to
be linearly independent, then the planes through the origin
orthogonal, respectively, to z and to ¢’ will intersect along a
straight line:

(3.34)

Here a is a parameter along the line. This line will cut X if
there is a real value of & for which

px=ux=0=x=auly'

a(php=a((pp)? —pu?) =1, (3.35)
which will happen if and only if
(pp')? —pu>0. (3.36)

We can now systematically analyze the six possible kinema-
tical situations, listing the nature of the pair u,u’ at #t, 1, ts, Il
Is, and ss, and check in each whether the inequality (3.36)
can be obeyed. (Naturally, in the “off-diagonal” cases, such
as t/, it does not matter which of x and u' is of type ¢ and
which of type /.) Keeping in mind the nature of Lorentzian
geometry, we find that in four situations, the inequality is
uniformly obeyed:

(3.37)

However, in the two remaining cases Is and ss, no uniform
statement can be made; depending on the specific choices of
pand y', (p'-u)? — p'*u? could have either sign.

The result is that if for the two elements 4, 4’ in
SU(1,1), at least one of the vectors u, u' is of type ¢, or if both
are of type /, € (') and € ( ) definitely intersect on X;
then Eq. (3.33) is adequate to give us a geometrical “addi-
tion” or composition law for screws, in a way similar to the
use of Eq. (2.8b) for SU(2). But in the /sand ss cases, there is
no guarantee that ¢ (u') and € ( 1) will intersect; and if
they do not, a choice of one common vector zas in Eq. (3.33)
is not possible.

Fortunately the following decomposition theorem,
which exhibits an interesting structural property of SU(1,1)
comes to our aid, so that Eq. (3.33) can be used for compos-
ing screws in all situations:

Theorem: Any 4 "eSU(1,1) can be expressed (in infi-
nitely many ways) asaproduct4 ” = 4 ‘4 where both factors
A’ and A are of type 1.

Proof:We naturally construct the argument in the spirit
of the theory of screws, and use the geometrical machinery in
4 already developed. Assuming 4”5 + 1, we identify
u" #0, construct € (p")CZ, and pick x,y€% (u1") such
that

A" =A"+iu"-p=A(xy). (3.38)

Here x and y will be linearly independent, x+ 4 y. Since
each of them is spacelike, there are infinitely many timelike
vectors n orthogonal to x, and similarly »n’ orthogonal to y.
There are then infinitely many choices of n and n’ obeying

ttles, 0l (p'pu)? — p*u?>0.

nx=n"y=0;
n'-x#£0.

n’n'?<0;

3.39
ny#0, ( :
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These conditions are designed to ensure that n and n’ are
linearly independent and neither is proportional to x Ay.
Since both n and »’ are timelike, n A n’ is spacelike and so
when normalized will cut X:

z=anAn'eZ, (3.40)
nZ nIZ)—- 1 /2.

Now we construct the SU(1,1) elements A = A(x,z),
A' = A(z,p). Both of them are of type ¢ since by Eq. (3.39)

a=((nn)—

xNz=axN(nAn')= —axnn,
(3.41)
zAy=anAn'YANy= —ay nn',
are both nonvanishing timelike vectors. Finally,
A" =A(xy) =A(z,p)A(x,2) = A'A, (3.42)

which proves theresultfor4 "# + 1. If4" = + 1, wecan
take 4 to be any element of type t,and 4’ = + 4 ~.

To see by way of illustration how the choicesof 4 and 4
may be made, we can considerin turn 4 ” tobe of typet,/, 5. If
A" is already of type ¢, it lies on a #-type, one-parameter
subgroup, so for instance 4 and 4 ' could be chosen equal and
essentially the square root of A ”. If 4 " is of type / or s, the
situation is nontrivial. In these cases we can use the manifest
covariance under SO(2,1), i.e., the conjugation relation
(3.10), and assume without loss of generality that A " and z”
are in some standard configuration. This makes possible
choices of x,y,n,n’,z easy to visualize. We record below the
standard forms of A ” and ", possibilities for # and »’, and
theresulting 2, leaving it to the reader to check that all condi-
tions (3.32), (3.38)-(3.40), and (3.42) are obeyed.

A" of type I:

A"=¢ p' =¢€(et+e), €€=+1;

x=e, y=ce, —€(e+e,);
n=e, n =¢€2e+e,)—ece;

(3.43
z=(€e, + €e,)/\2; )
/1=6’/\/§’ m= —Eeo/\/i;

A'=0, p' = (2e—e€e, +e,)/\2.
A" of type s:
A" =¢€cosh¢, u" =esinhfe, €= +1, & #0;
x=¢,, y=¢€(—sinh/{e,+ coshe,);
n=e, n =coshge,— sinh{e;

_ (3.44)
z=e,

A=0, p= —ey

A'=0, pu' =e(coshfe,— sinhfe)).

With the help of our theorem, then, the product AB of
any two elements 4,BeSU(1,1) can be handled geometrical-
ly as an operation on screws, requiring at most two applica-
tions of Eq. (3.33). If 4, B belong to one of the four cases #,
tl, ts, or ll, we “slide” the representative pairs of points
on% (uy), € (up) till the “head” (second element) of the
B pair and the “tail” (first element) of the 4 pair become
2e€ (YN %E (ug). Then a single use of Eq. (3.33) gives
the screw for AB as determined by the pair (tail of B, head of
A). If A,B belong to either the Is or ss cases, and
E (s )NE (ug) = ¢, we use the decomposition theorem
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towrite AB = A "A’'B, with both 4 " and 4’ being of type ¢.
The screws for A ' and B can then be composed using (3.33)
to give the screw for 4 ' B; this can then be composed with the
screw for A *, using (3.33) again, to give the final result.

We now go back to the device of the flag, introduced in
Sec. IT1 D so as to allow us to visualize every AeSU(1,1) asa
connected arc on X plus a flag, and show how it can be repre-
sented graphically. As noted in Eq. (3.29), the element — 1
in SU(1,1) corresponds to the (degenerate) screw deter-
mined by any pair (x, — x):

xeX: A(x, —-x)= - 1. (3.45)

This is just like the great semicircle turn in the SU(2) case.
Since x is spacelike, there are infinitely many timelike vec-
tors ¢ orthogonal to it, which means there are infinitely
many connected 4 ( )’s of type ¢ containing both x and
— x. [In addition, there are infinitely many s-type & ( u)’s,
and two I-type & ( 1)’s, each made up of two branches, and
each containing x and — x, but on separate branches; these
however are not useful for the present purpose.] This degen-
erate screw, representable by a connected arc on any one of
these t-type € ( u)’s, and in fact running halfway across it, is
indeed the flag we have used above.
As an example, consider the element

—coshf® —sinh@ )
_(—sinhé? —cosh 6 ePCSU(L,1), (3.46)
for which
A= —coshé, pu=e, sinhé. (3.47)

Then % ( u) consists of two branches of the hyperbola
(x*)? = (x")* =1 (3.48)

in the 0-2 plane, as in Fig. 1. A choice of x,y so that
A=A(xy)is

x = (sinh(8 — 6,), 0, cosh(8— 8,)),
y=(sinh 6, 0, —cosh®§,),

where 6, may be chosen freely. Naturally they are on sepa-

(3.49)

)
/ g

FIG. 1. Use of the flag — “1.”
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FIG. 2. Rotation boost decomposition of general element.

rate branches of % (u). Now, —A=A(x,-—y)
= A( — x,y) isin the range of the exponential map, and can
be represented by the connected arc x—» —y or — x—y as
we wish, along one branch of % ( u). Coupled, respectively,
with the flag screws 4( — p,y) or A(x, — x) standing for
— 1, we get back 4(x,y) via Eq. (3.33):

A4 =A(xy) =A(—pp)A(x, —y)
=A(—xp)A(x, — x).
This is graphically seen in Fig. 1.

(3.50)

IV. CONCLUDING REMARKS

In this paper we have presented a generalization of
Hamilton’s method of turns for SU(2) to a theory of screws
for SU(1,1), thus leading to a new and useful way of pictur-
ing the elements and structure of this noncompact group.
The two distinguishing features of SU(1,1), as contrasted
with SU(2), are that the range of the exponential map is a
subset of SU(1,1); and that two planes passing through the
originin.# may in some cases have a line of intersection that
does not cut X. These features, which at first sight seem to
pose problems for the development of a complete geometri-
cal picture, can be taken care of by the use of the flag — 1
when appropriate, and the use of the theorem of Sec. III E,
so that all group elements and their products can be satisfac-
torily handled.

As an example of the usefulness of our geometrical pic-
ture for SU(1,1), we recall the result that any element of
SU(1,1) is a “boost” in an appropriate direction followed by
a rotation [element of the maximal compact subgroup
U(1)], or a rotation followed by a boost. This fact is imme-
diately and visually obvious in the screw representation, re-
quiring no calculation at all! Elements of the U(1) subgroup
have p parallel to e, so for them % ( g) is the unit circle in
the 1-2 plane, or the “waist” % of X:

¥ x*=0, (x")+ (x*)2=1.
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This is like the equator on .52 in the turns case. On the other
hand, pure boosts are elements for which p is a linear combi-
nation of e, and e,. Forsuch au, € ( ) is the intersection of
3 with a ‘“‘vertical” plane containing the e, axis; the two
branches of the hyperbola making up ¢ ( u) are like “lines
of longitude” on S % Now given a screw determined by the
pair (x,y), we can assume without loss of generality that
either x or p, whichever we wish, lies on 77". This is because
every ¢ (u) is guaranteed to intersect . Assuming for
definiteness then that xe %", we can draw a hyperbola on =
in the vertical plane containing y and the e, axis. If this cuts
77" at a point z, we can recover the pair (x,y) by composing
the screws (x,z) and (z,y) in that order. { Note incidentally
that both these are connected arcs, whereas no assumption
was made about x and y being on a connected branch of
% (x,y).] This is the proof by the present method that any
SU(1,1) element is a pure rotation followed by some pure
boost, as depicted in Fig. 2. If we had ye %" instead, the
decomposition would have been in the opposite order.

We may note that the t,/s classification of finite
SU(1,1) elements is relevant to periodically focusing optical
systems.® An example is a laser resonator. One sees that the
system is stable if and only if the ray-transfer matrix for one
period is a t-type element of SL(2,R). An interesting appli-
cation of the theorem of subsection 3.5 is to squeezing that is
an s-type element of SU(1,1). The theorem shows that
squeezing can be realized by switching periodically between
two z-type nonsqueezing transformations. A detailed analy-
sis of these questions, as well as the development of a new
representation for first-order Fourier optical systems, will be
presented elsewhere.
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The local existence of the Borel transform of a two-dimensional field theoretical model
characterized by the rational interaction g?x%/(1 + gx?) is proven.

1. INTRODUCTION

In a recent paper,’ we proved the Borel summability of
the perturbative series for the energies of the quantum me-
chanical system characterized by the nonpolynomial inter-
action

gx%/(1 +gx%) . (N

The proof of Borel summability was done by establishing
that the perturbative spectrum is strongly asymptotic and
then applying a modified version of Nevanlinna’s theorem.?
Here we want to extend these studies considering (1) as the
self-interaction of a quantum field. To achieve renormaliza-
bility, due to the nonpolynomial character of the interaction
(1), we shall restrict our analysis to two dimensions. We are
then able to prove the local existence of the Borel transform
of the Schwinger functions of the Euclidean theory. This is a
first step towards a complete proof of Borel summability.

Il. THEORY

The physical motivation for considering the interaction
(1) comes from laser theory models where the reduction of
the Fokker-Planck to the Schrodinger equation produces
interactions similar to the above one (see, for example, Ref.
3 and the references mentioned therein). Besides that, the
study of (1) has its own merits for, as it is a rational function,
the perturbative series is singular both due to the bad behav-
ior at x large and to the poles occurring in the denominator
of the potential.

Basically, there are two reasons why, in general, the per-
turbative series in divergent. First, the number of diagrams
can grow too fast (typically with n!) with the order n of
perturbation and, second, some individual diagrams domi-
nate giving too large contributions. The second reason is
peculiar to renormalizable theories whereas the first phe-
nomena occurs also in superrenormalizable models like
ours. We will have to find therefore bounds in the number of
diagrams that contribute at a given order. An important re-
sult concerning this is the following lemma.

Lemma 1: The number, y(n), of connected diagrams
with V vertices contributing to order n to the E point
Schwinger function of the two-dimensional model with La-
grangian

1 1 6
L=38#¢a#¢+?m2¢2+% 2)
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satisfies the inequality
y(n) <27 (n) (V) (E)nE . 3)

To prove (3), it is convenient to collect some combina-
toric relations valid for a generic connected graph G of our
model.

Lemma 2: In a graph G contributing to the Schwinger
functions of the model (2), the following relations are valid:

WL=I-V+1,

1
Dn=—N%kV, -V,
)= KV

Nn=I+EN2-V,

4) V<n/2,

S)Yn=L—14+E/2. (Thusn=LifE=2.)
6)I<in—E/2+1<3n+1,
NL<in—-E/2+2,

8) I<in, fE=2,

9> kVi=E+2I,

10) 6¥<Y k¥ <3n,

where L = number of loops; E = number of external lines;
I = number of internal lines; ¥ = number of vertices.
Relation (1) is just Euler’s relation expressing the num-
ber of loops of a diagram in terms of the number of internal
lines and vertices. To verify the other relations, we use

6

A kvertexis a vertex in which & lines are met. From (4)
a k vertex has a factor g“/> ', Thus if the graph has ¥, k
vertices then the diagram will be of order n =2, (k/
2— 1V, =12, kV, — V, which proves relation 2). Rela-
tion 3) is proven using relation 2) and the relation
1 3kV, =1+ E /2 obtained by counting the number of line
endings in G. Now, since at a given vertex there are at least
six lines, n =2, (k/2 — 1)V, <23, V), =2V, giving rela-
tion 4). The other relations are proven similarly.

The counting of the number of diagrams is greatly facili-
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tated by a method developed in Ref. 4. Let G be a proper
diagram. We can always draw it so that all its vertices are on
a circumference. Therefore two lines of any given vertex of G
are used to link it to two other vertices. There are (£ ) ways of
choosing two fields from the fields associated to a k vertex.
Once these fields are chosen there is an additional factor,
2Y~1!, coming from the different ways of contracting them.
As (¥)<2¥, the number of ways of choosing two lines from
each vertex is less than or equal to 27— 2% *"x 2%

To some vertices there will be also attached external
lines. The number of ways of selecting the fields associated to
a given k vertex so that j fields will be contacted with the
external fields is ("j 2y « 2%~ 2, Hence, considering all the
vertices of the diagram we get a number of contributions less
or equal to 2> BV pam using Lemma 2. The number of
external lines j at a given k vertex can vary from zero to
k — 2. The consideration of these possibilities gives a factor
less or equal to VZ. Moreover, having fixed the number of
external lines at each vertex, there are E! ways of attaching
the external lines to them.

After having distributed the external lines there will be
still a number / of fields to be contracted. These contractions
will produce (/ — 1)! graphs. The number of diagrams with
V vertices has also factor V! coming from the permutations
of the vertices. Putting all this together we arrive to the con-
clusion that the number of diagrams with V vertices is
bounded by

B=2"VIEWE({I -1 (5

The number / can be written in termsof nand E, I = 2n — E.
Indeed, from its definition / =2 — 2V =2n — E, where
(3) in the Lemma 2 has been used. Then

B=VIEWEY"—E2(n _ E/D)IKVIEWE2"n!. (6)

This number bounds the number of graphs having a fixed,
{V,:k>6}, configuration of vertices. The result (3) follows
from relation (4) of Lemma 2.

The perturbative expansion for the Schwinger functions
are obtained from (1) by expanding it in powers of g. The
only divergences that are found in this process are associated
to tadpole diagrams (graphs having just one loop and one
internal line) that are removed by Wick ordering the interac-
tion Lagrangian with respect to the mass m. In this situation
it can be proven® that in order # individual amplitudes are
bounded, i.e.,

A4,<K™, N
where K’ is a constant independent of the topology of the

associated diagram. Now, the order n total amplitude, G {2,
is defined as

An,{Vk}

G(E)= —~— 1" —1V ,
P =(-1"3( A

(8)

where the sum = is over all possible assignments { ¥} };k>6
tothe verticessuch that 3(k /2 — 1) ¥, = n. Here, 4, (3 is
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the sum of all possible graphs corresponding to a given as-
signment. It can be easily seen that, in a given order n, there
are not more than 2" configurations satisfying 3(k/
2—-1H)¥V,=n

From (7), (8), and (3) we have therefore that the order
n total amplitude is bounded by

|
Y ) g, o
A

where the supremum is to be taken over all configurations
satisfying 2(k /2 — 1}V, = n. This supremum is bounded
by a positive constant to the power n. Indeed, we have

V! _ (2k>6 Vk) (2k>8 Vk) L
I, V! Ve Ve

<22k>6 Vk22k>s Ve, o

2!"n"nlE! sup (

=22k>6(k/2—2)V,(<2,,. (10)
We have therefore
|G P |>2°"(n) (ENYn®K ™. (1

This equation implies that the perturbative series has a
Borel transform free of singularities within a ball of radius
1/K with the center at the origin of the Borel plane.

lil. CONCLUSION

We can now enunciate our main result.
Theorem: The expansion
(E)

S B,b", B,=—"

(12)
n!

for the Borel transform of the E point Schwinger functions of
the theory (2) converges within a circle of radius 1/K where
it defines an analytic function of .

To go further, having proved the local existence of the
Borel transform, we now need to extend its domain of anali-
ticity to a neighborhood of the positive real axis in the com-
plex Borel plane. Work in this direction is in progress.
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A new derivation of the farfield quadrupole formula for radiated angular momentum is
presented, based on the gravitational Noether operator. Those metrics for which the angular
momentum flux is well defined are characterized, and it is shown that this is free of the
supertranslation ambiguity in the Newtonian approximation.

I. INTRODUCTION

According to the theory of general relativity (as well as
other theories of gravity), systems of moving masses and/or
varying electromagnetic fields emit gravitational waves (just
as a system of moving charges emits electromagnetic
waves). These waves will, in general, carry away energy and
angular momentum, so that the study of the fluxes of these
quantities is a direct study of the evolution of the system.

Due to the complexity of working with exact solutions
of the (nonlinear) field equations, in general, and perhaps
also due to the fact that all such solutions available are neces-
sarily oversimplified and thus correspond to unphysical si-
tuations, calculations of the energy and angular momentum
fluxes of a system have been done employing certain approx-
imation procedures like expanding in powers of the gravita-
tional coupling constant (due to the weakness of the gravita-
tional interaction), or in powers of the ratio of the velocities
of the masses of the system to the velocity of light, or in
inverse powers of the distance from the system, or even com-
binations of these. (See Refs. 1-4.) Working at large dis-
tances and for small velocities, in what is essentially the
Newtonian approximation (see below) although not always
explicitly saying so, these authors have derived the usual
quadrupole formula

dL, 2 e

—dt—dtz?e”‘f [d.;d... ]t (nH
where L denotes here the angular momentum of the system,
d; its quadrupole moment: d; = § T,,X,X; dX, and the inte-
gral is taken over the sources. The time averaging is intro-
ducedin (1) in order to make the integrals that defined L/dt
converge. (A similar formula for energy has also been de-
rived.)

We shall show in this paper that one can derive the qua-
drupole formula for all solutions of Einstein’s field equations
in the Newtonian approximation, without the need for aver-
aging (cf. also Ref. 5). Our formalism will also allow us to
characterize those metrics (no field equations assumed) for
which the angular momentum flux is not divergent and well
defined.

As a measure of energy and angular momentum density
we use the Schutz and Sorkin® gravitational Noether opera-
tor (a pseudotensorial operator on vector fields that reduces
to the familiar pseudotensors for particular choices of the

*) Present address.

1009 J. Math. Phys. 30 (5), May 1989

0022-2488/89/051009-04$02.50

fields), which is defined, for any vector field £#, by

8mth EVi= — (—g)VAGH E"
+%aa [h”aVB,ﬁgv( _g)—l/Z]’ 2)
where
hef = (—g)(g"g™ — g=g"P) (3)

and G is the Einstein tensor. This operator has the advan-
tages that it does not depend on second derivatives of the
metric, it contains the Einstein’ and the Landau-Lifshitz’
complexes as particular cases, and when the field and matter
equations are satisfied, the Schutz and Sorkin £&-momentum,
defined by

P&H]: =f "&£ +t* EMdo, (4a)
H

is conserved, and may be written as

PI&H] = (167) " Laawwﬁ‘,,g‘,( —8)'"))do,

= (167) ' iﬂhﬂ“"”ﬂg‘,( ~g)"'"?dz,,.
(4b)

Here, I, is the Noether operator for matter (a covar-
iant generalization of the so-called canonical stress-energy
tensor, see Schutz and Sorkin®), H is a spacelike or null hy-
persurface with boundary dH, and do, and d X, are the
coordinate volume and surface elements. The quantity above
is equivalent to other definitions when evaluated on solu-
tions of Einstein’s equations (Nahmad-Achar®). This, to-
gether with the fact that (4a) is a generalization of a quantity
that would be the usual four-momentum or angular momen-
tum for a classical field theory (according, respectively, to
whether the vector field is chosen so as to be asymptotically
equal to a timelike or a rotational Killing field in flat space),
entitles us to call it by the same name. Furthermore, it has
the added virtue of being rather insensitive to the asymptotic
behavior of the metric, which allows one to develop very
strong variational principles for solutions of Einstein’s equa-
tions in a vacuum or in the presence of matter fields (cf.
Nahmad-Achar and Schutz® and Nahmad-Achar'® for de-
tails).

The reader should note that Eq. (4a) does not define the
full four-momentum or the full angular momentum, but
only one component of them. Different components may be
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chosen by an appropriate choice of the vector field. Note also
that this definition is an integral over a hypersurface, and not
the (perhaps more usual) tensorial map of a Poincaré sub-
group of the BMS group. There is no relation between these
two definitions unless Einstein’s field equations are assumed
to hold. This is important because it allows us to evaluate the
angular momentum (or the four-momentum) in metrics
that are not necessarily solutions of Einstein’s equations, a
requirement for dealing with the variational principles al-
luded to above. It also means that we can define and evaluate
quantities like “angular momentum flux” in a generic space-
time (Nahmad-Achar'?).

Il. ANGULAR MOMENTUM FLUX

Let us assume that the description of our physical sys-
tem under consideration (matter + gravitational fields) is
given completely by a set of field variables @, (x), where x
stands for the local coordinates, and that the field equations
can be derived from the principle of stationary action

85S =0, (5a)
where
S=f L [x0(x)]1d*x, (5b)

and L[x,Q(x)] is the Lagrangian density, which is a func-
tional of the field variables @ and their derivatives.

Let H be a hypersurface of constant time ¢ (or constant
retarded time u if it is null). Let H ' be another hypersurface
of constant time ¢ + At. (Again, and in what follows, replace
¢t by u if null surfaces are considered.) Let C be the “cylin-
der” at (spatial or null) infinity joining A and H’; note that
Cis of the form C = dH X At. Call Z the region enclosed by
H, H’, and C. Under a pure dragging by a vector field €, i.e.,
ox* = £°, we have |

5.5= §*, £ " do, (6)

where 3# £ =1T# £V 4t * £ (cf. Schutz and Sorkin®
and Nahmad-Achar®), so that if the action is invariant un-
der the vector field &, and the equations for the variational
principle are satisfied, we obtain

| sroerdo,— | argrdo, = — [ 30gdo,
(7

SL
oL s.04* 35
sp Q9 x+

J=

Using this expression we can write

d T § n o
2 PIEH] = lim —{P[£(+A0,H') = P[E(.H]}

~tim L [ 3, gvdo,,
C

ar—0 At

_ _ 23§ S, -£n,8, dS, (8)
oH

where the factor 2 comes from the two boundaries of C, and
n is the unit radial vector field. Equation (8) makes sense
regardless of whether or not the field equations are satisfied,
and so we may take it, in general, as a measure of the angular
momentum flux. Since we are interested in angular momen-
tum (the case for energy is totally analogous, and the calcu-
lations even simpler), we set £ # = x84 — 54 asymptoti-
cally, in an asymptotically Lorentzian coordinate system
[t,x, y,z] (by following the formalism introduced in Nah-
mad-Achar and Schutz,'' one may choose to work with the
Noether operator in any coordinate system, obtaining exact-
ly the same result). Furthermore, we write the metric as

g,u\’ = 77““' - h ““'! g;u' = 7]/“' + hur + h;t/lh }Lv + O( 1/'})
9

with, as usual, h,. = O(1/r). Then, after some algebra we
have

RS 'nS, =[(— g) l/2/1677']n,'63jk [ - xjhkv,oh 01',1‘ - 'xjhkv.Oh 0",0 - xjh k",vhiﬁ,/} + xjhk/lh m,ohfo,o + h - thk\',()hiv.()
— Xx;hh Av,oh."l.n — X0k A\‘hi",o + hij,Oh ok 4 Xihyoh ' oh 4+ 5rjh kﬁﬁ + X0 h aﬂ./)‘

i“u

Jik

A a 7] k 1] 0
—Xhah oha %o + 8,0, —X;h R o+ X hooh £ Xihooh Oh P,

+ 5fjh Kop # o+ xjhki.Oh “h pp,o - xjhki,Oh gphup.O ] + 0(1/7r),

P

where the index O refers to the coordinate ¢, and latin indices
runin [1,3].

The angular momentum flux is calculated by substitut-
ing this last expression into Eq. (8) and performing the inte-
gral. However, some terms in Eq. (10) are O(1/r) and will
in principle diverge when integrated over H and taken the
limit to infinity. These are

[Eq. (10)],,, = ( 1/1677')”f63jk [xjhki.o Ry — xjhko.oh.'o.o
—thk,,‘oh hy'o +5ijhkov()]- (11)
In order to have a well-defined flux we would have to
restrict ourselves to the class of metrics for which the rhs of
Eq. (11) adds up to something which is O(1/7°) or vanishes
under angular integration. If we choose our origin of coordi-
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(10)

lnates to be at the center-of-mass of the source, as is often
done in linearized theory, the linear momentum of the
source vanishes and one has 4% = O(1//7), so that (11)
reduces to

[Eq. (10)],,, = (1/1677')”163ij1 [h ki,ohaa.o — hyaoh ai,o]
[A%=0(1/7)]. (12)

lll. NEWTONIAN APPROXIMATION

When dealing with a system whose gravitational field is
weak, so that terms nonlinear in 4 #* and its derivatives can
be neglected, and such that its characteristic velocity is
small, v €c, we can relate the metric coefficients to the source
in a simple way:
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Zij = i (quadrupole moment)" + i (0] ( 2) + 0 ( i) .
r r ¢ r
(13)

One usually neglects the second term on the rhs under the
assumption v <c; but strictly speaking, one can only do so
when evaluating the coefficients at a fixed value of r. At fixed
velocity, however small, and in the limit as - o« (which is
the case we are interested in here), this term, while formally
small compared to the first one, will cause the angular mo-
mentum integral to diverge.

In the so-called Newtonian limit, as treated by Futamase
and Schutz*, the velocity v is assumed to be of the order of a
small parameter € that labels a sequence of relativistic solu-
tions that approaches a Newtonian limit. The characteristic
time scales of the system go as €~ ! since v~ ¢, so that events
at similar stages of evolution in the different space-times of
the sequence are related by a map (x',t) — (x',7 = €t). Since
gravitational radiation emitted by the system will have a
characteristic period given by a dynamical time interval A7,
and this scales as 1/€ in #, any point at fixed x’ will find itself
within one wavelength from the source for sufficiently small
€. Therefore, Futamase and Schutz define another coordi-
nate %’ = ex’ and study the radiation at fixed (%',7), which
essentially means at a fixed number of wavelengths away
from the relativistic source. In this formalism, v~¢ and
r~ 1/¢, so that the second term in Eq. (13) is O(€%) just as
the third one, while the first is O(¢). The second term
(which can be seen to consist of a combination of the third
time derivative of the mass octupole and the second time
derivative of the current quadrupole of the source) can thus
be neglected and the integral of Eq. (12) becomes

§[Eq. (12)]1d*S = L

P haohiuo =0.  (14)
That is, the O(1/r) terms in Eq. (10) do not contribute to
the flux integral in this approximation. This result is impor-
tant since Futamase and Schutz have shown that the Newto-
nian-limiting sequence described above is an asymptotic ap-
proximation to a well-defined sequence of solutions of
Einstein’s field equations, and that both the near- and far-
zone quadrupole formulae for the outgoing energy flux are
asymptotic approximations to general relativity.

The usual argument found in the literature (Landau
and Lifshitz,' Morgan and Peres,” Peters,’ and Lightman er
al.'?) is that, by imposing an outgoing-radiation boundary
condition, one gets

a + 14

—h,, +— h 15

ar e o (1>)
so that

;/u‘.i = nlh,u\ 509 (16)

and this allows us to convert all spatial derivatives into time
derivatives multiplied by the appropriate direction vectors.
Performing a time average, all the terms that are pure time
derivatives are transformed into secular changes, and these
are neglected under the assumption of periodic motion. This
procedure gets rid of the leading-order terms that would oth-
erwise lead to divergences. Equation (16), however, as-
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sumes that the O(v/c) term remains negligible in the limit
r— o0, s0 that the argument holds, again, only in the Newto-
nian approximation.

We shall now evaluate the integral (8) for the flux, us-
ing the expression given in (10) for the integrand, and relat-
ing the metric coefficients to the sources (in the limit of weak
fields and small velocities). Using the zero linear momen-
tum frame (ZLMF) mentioned above, A, = O(1/7*) and
we are left with

3", 876,
= (1/16m)n, € [hy + X;hpehg0h ™
+ X0 b " o + X0 Ol h " + 8,R 5
+ 8,0 L, — Xy B G 4+ xh PRy ok P,
— X000 Phapo + XihioPao — XiRraoh “o
+ 0(1/7). (17

Furthermore, using Eq. (16) for the last two terms in
(17), we have finally

angular momentum flux
= ——6 9€ {n, [7i4 +6,jh"’3,3+5 N
167
+xj[ - kki,ihOO‘O - % h pAkOOO + ka,,}zkao
+ 10", o | 3d3S. (18)

Carrying out an expansion of the components 7 #* we
obtain

—(2/nd,; + O(1/7),

Foo= — M _ 22X 3y k) (19)
r r
2x'x7 - 1
_ o( )
ER AR =
which we use to evaluate each term in (18):
(a) first term vanishes;
(b + ¢) second and third terms vanish together'
@ e [ —x oo ld?S = 2 i
Loend | =L xhie, B a2
(C)EG *—7Xj .k Mo0.0 S
I
= - F 6—‘}}‘ dk.s dsj;

sf

(f) F €y §xjha,,h,m0 d’S=ed, d;

(g) — et ff; % x5 2 o dS

— €3jk[ _— ak.\' d‘l +%dl\x dgj .

Adding up all the terms, the angular momentum flux in the
Newtonian approximation, evaluated in the ZLMF, is

J 2 e e
—P[§H] = — =€V d, d, 20)
ot [§ ] 5 kssj (
as expected.
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IV. DEPENDENCE ON VECTOR FIELDS

We have noted that the integral defining the angular
momentum is in general an O(r) quantity; therefore,
changes to order 1/r in the vector field may produce finite
changes in the angular momentum itself (this seems to be the
way in which supertranslations are reflected in this formal-
ism). Thus, considering two null hypersurfaces H(u) and
H(u + Au), and changing the vector field £ to order 1/r on
H(u + Au) without altering it on H(u), we can arbitrarily
change the value of the angular momentum measured at a
later retarded time while maintaining that at the present re-
tarded time unaltered. This must of course be reflected in the
measurement of the flux, and we shall here calculate this
change.

The leading terms, and the only ones that would con-
tribute to a change in the flux, are those given in Eq. (11):

[3”{5"”.’5; ] vr = (1/1677)”:'63”( [xjhki,Ohaa,O
- xjkko,o;?:o,o — x;kkv,oh iv.o
+6,h kovo]. (21)

Suppose now that we change § to first order in 1/, i.e.,
consider

s =S lo(1)]

The lhs of (21) will pick up new O(1/77) terms under this
transformation, which will contribute to the flux when inte-
grated. Denoting these by Z, they can be shown to be

Z = (1/161r) [;i,Onihaa,O — Sroihigo ] , (23)

whose surface integral need not vanish. When Einstein’s
equations hold, we can use them to relate the metric coeffi-
cients to the source. Then,

change in flux = é Zd’s

= — i r;i'kknigi,o + _1 ’Hik n:8xo d’Q,
2 87
(24)

where d?Q = sin 8 d6 d¢.

Note that the change in angular momentum flux de-
pends only on the time derivative of the spatial components
of £,. In other words, if the spatial components of £, are
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constant in time, there will be no change in the flux. This is
not surprising, for it is precisely those transformations with
&0 #0 that take us away from a ZLMF, by leaving our
origin of coordinates not at rest with respect to the center of
mass of the source. What is interesting, is that even for these
transformations with &, ;, #0 there will be no change in the
flux when we work in the Newtonian limit, since they intro-
duce an extra factor of v thereby increasing the order in 1/7
(cf. see Sec. III). Thus, by relating the radiation terms to the
sources we are fixing the null cones, in such a way that the
angular momentum flux is free of the supertranslation ambi-
guity in the Newtonian approximation.

V. COMMENTS

We have shown that the Noether operator formalism
reproduces the well-known results found in the literature for
the angular momentum flux carried away by gravitational
radiation, in linearized Einstein’s theory. Furthermore, it
allows us to calculate the flux for a wide class of metrics, for
which it is shown to be well defined. We have calculated the
dependence of the flux on the vector field, and shown that it
is free of the supertranslation ambiguity in the Newtonian
limit.
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It is demonstrated that the KdV equation with nonuniformities, #, + a(#)u + (b(x,t)u),

+ c(uu, +d(u,,, + e(x,t) =0, has the Painlevé property if the compatibility condition
among the coefficients of it holds: b, + (a — Lc)b + bb, + db,,, = 2ah + hL(d /¢*) + (dh/
dt) + ce + x[2a* + aL(d3/c¢*) + (da/dt) + L(d /c)L(d /c®) + (d /dt)L(d /c)], where

= (d /dt)lg and h(¢) is an arbitrary function of ¢. The auto-Bicklund transformation and

Lax pairs for this equation are obtained by truncating the Laurent expansion. Furthermore,
assuming the compatibility condition, then the KdV equation with nonuniformities is
transformable, via suitable variable transformations, to the standard KdV.

I. INTRODUCTION

In the last decade there has been intense activity regard-
ing the study of the complete integrability of nonlinear par-
tial differential equations (PDE) and, moreover, their study
has revealed unexpected connections between geometry,
analysis, and physics. But the main domain of activity was
generally restricted to equations without explicit (x,t) de-
pendency.

Recently, it has been observed that, when all the ordi-
nary differential equations obtained by exact similarity
transformed from a given PDE have the Painlevé property
(PP), then, perhaps after a change of variables, PDE is com-
pletely integrable.' The complete integrability is also defined
in terms of the existence of the inverse scattering transform
(IST) or the Bicklund transformation (BT). The existence
of an IST solution is assured by that of the Lax pairs.?

More recently, Weiss ez al.> have proposed a generalized
PP which is directly applicable to PDE. In the latter ap-
proach, a PDE has the PP if its solution can be expressed as a
single-valued expansion about noncharacteristic singular
manifold f(x,t) = 0. This approach has been applied to var-
ious field equations.**

Il. PAINLEVE PROPERTY FOR THE KDV EQUATION
WITH NONUNIFORMITIES

Here, we report the results of PP analysis of a KdV
equation with nonuniformity terms:

u, +a(t)u + (b(t,x)u), + c(uu,
+d(Du,,, +e(xt) =0. (1)

Equation (1), for particular values of the coefficients, ap-
pears in many physical systems.”'°

uj_3‘1 + (j_4)uj_2f;
+c[zfmuj_m [ty _ 1+ (m— 2)u,,,fx]}
0

We have found that Eq. (1) admits the PP if the follow-
ing compatibility condition for the coefficients of the equa-
tion is satisfied:

b, + (a— Lc)b+ bb, +db,,,

—2ah+hLi+%—+—ce

+ x(Za + aL———- + —@—
dt

dddd)

+r4rt 2 re (2)

dt ¢

where L is the logarithmic differentiation operator, i.e.,
= (d /dt) 1g, and h(¢) is an arbitrary and sufficiently
smooth function of ¢.

Condition (2) is found using a property of Lax pairs
obtained from the PP. The possible ABT is also developed,
when the equation (1) is integrable.

We are now looking for a solution of (1) in the Laurent
series expansion

u(xt) = f2x0 S, u (O (x,0), 3)
0

where u; (x,t) are analytic functions in a neighborhood of the
singular manifold f{x,?) = 0 and « is an integer to be deter-

mined.
Inserting the ansatz

u(x,t) =f“u,

in (1) and comparing the exponents, we find that the lead-
ing-order analysis gives the value @ = — 2. Inserting the
ansatz (3) together with @ = — 2 in (1), then we find the
recursion relations for u, (x,1),

+@+b)u_s+b{u_,, +(j—Bu_,f.}

+d{uj73,xxx + 3(j—4)uj—2,xxfx + 3(.]_ 3)(j_4)uj——|,xfi (4)

+3G DUy fo + (=2 =3)j— DS

+ 3(.]_ 3)(j_4)uj7]f;(f:(x + (j_4)uj—-2f:(.xx} —+—86]5=0
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In collecting terms involving u;, it is found that
df>+ D=4 —6)y
= F(x,t,u; _ | yeslhgofiofssn) forj=0,1,2,... (5)

Equation (5) determines the coefficients u; of the series
expansion (3), provided that j# — 1, 4, 6. These values of j
are called the “resonance” of the recursion relations and
allow the introduction of arbitrary functions u, and %,. For
j= —1, the series (3) is nondefined and therefore the reso-
nance at j = — 1 corresponds to “arbitrary” function f de-
fining the singular manifold.

For KdV with nonuniformities (1), we find from (5),

j=0, uy= —12(d/c)f?, (6)
j=1 u, =12(d/c)f,, @)
i=2 Lo fi+ 6% +cuy fr+4df, fro —3df% =0, (8)
j=3, W=L(d/c)f, —cuyf + df s

+cuy fror +af, + bf + £ =0, (9
and
j=4, W, =0. (10)

By (9) the compatibility condition (10) is satisfied identi-
cally. The compatibility condition atj = 6 involves extensive
calculations. (All the straightforward but long and tedious
computations are performed in a P.C. by using the mu-
MATH package.)

If we specialize u, = u, = 0 and, furthermore, ¥, =0,
then it is easily demonstrated that

u; =0 for j>3 (1
if

Uy, +au, + (buy), + cusu,, + du, . +¢=0. (12)
From Eq. (3) and Eqgs. (6)-(12) we get

u, = — 12(d /¢)f?, (13)
u, = 12(d /0)f., (14)
fofi +0F 2+ cuy 3+ 4df, f — 3df =0, (15)
L(d/0)f, + dfexxx + €Uz fox + fu

+af, +bf. =0, (16)
Uy, + au, + (buy) , + cytiy , + duy i +€=0, (17
u=12(d/c)(L, f) + tiy, (18)

and u; =0 forj> 3.

In transformation (18) u and u, satisfy the same equa-
tion (1) if Egs. (15) and (16) are consistent. In this case
(18) defines an ABT of the KdV equation with nonuniform-
ities.

To prove this, we obtain

fi=V (19)
and find by straightforward calculation that
— V=B V+bV, +cusV, +eu, ¥V +4dV,,  (20)
—V,=lHa+L(d/)}V+3dV. .V, /V
+dV ., +cu,V, +bV,. (21)

Eliminating V,, we find
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fla—b, +L(d/e)V —Leu,, V

+3dV. .V, /V—3dV,,, =0. (22)
This equation can be written as
jla—b, +L(d/c)] — seu,,

-3dWV,,/V),=0. (23)

Integrating Eq. (23) with respect to x, we have

i@+ L(d/c)x — b+ h(t)] —deu, — 3dV,./V =q(1),
(24)

where A(¢) and ¢g(t) are two arbitrary functions of the vari-
able ¢.
Equation (24) can be rewritten as

s(O{illa+ L(d/e)x — b+ h(8) 1V
—leu,V—3dV,,. } = AV,

with A = ¢(¢)s(¢) constant.
We thus have found a candidate for a Lax formulation of

uZ,t + au2 + (buZ)x + cu2u2,x + duZ,xxx + e= O
by defining the operators
Aluptx) =s(){Mla+ L(d/e))x — b+ k)

(25)

— leu, — 3dD?}, (26)

B=1b, + bD + cu,D + lcu, , +4dD". (27)
Equations (25) and (20) then read

AV =4V, (28)

V,= — BV. (29)

The eigenvalue problem (28), and (29) is compatible with
the time evolution of eigenfunction V given by (29), if we
have the operator identity

A, =[AB]. (30)
From (28) and (29), then, (30) holds if
-i(cs) =cs(20+Li>, 31
dt c
i (ds) = 2ds(a + L ——‘-i—), (32)
dt c
Ztller 2 Ep-oa])
dt c

+bs(a+Li—bx)-—sdbxxx + sce = 0. (33)

c

The equations (31) and (32) are simultaneously ful-

filled by
Sy ool aoa)
expt 21 a(t)de ).
R
Substituting for s(¢) from Eq. (34) into Eq. (33), we obtain
the constraint (2).

s(t) = (34)

Ill. REDUCTION TO THE KDV STANDARD, EXAMPLES,
AND FINAL REMARKS

The transformation
1

c(t)
reduces Eq. (1), by using the condition (2),'to

u(x,t) = (v(x,t) — b(x,2))
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3
v, + (@a—Leyv+wv, +dv,,, — x(2a2 +al -d—4
¢

da d d d._d
+—+L—-—L—+ L )
dt c dt ¢
— 2ah — hLi—ﬂzO. (35)
c? dt

Equation (35) can be transformed under
v=w(s,t) +g(1)

§=x—fg(t)dt’

where

£+(a—Lc)g {Za —aLd —}—LdLi

dt c ¢
+iLi]Jgdt_zah gk _,
dt ¢ ? dt

to yield the following equation,

3
w, + (@ — Le)w + ww, + dwg, ——é‘(2a2 +aLd_4-
c

d d d
+7+ —;—L——+ch) 0. (36)
In turn, Eq. (36), via the transformation
=(a+L(d/0))+ O,
becomes
®, + (2a+ L(d/c*))O + £(a+ L(d /)0,
+ 00, +dO,, =0. (37)

Now Eq. (37) satisfies the condition'? that guarantees its
own reduction to the Korteweg—deVries equation with con-
stant coefficients.

Several equations of physical interest satisfy the com-
patibility condition (2). These equations are:

The equation of KdV type for nonuniform media with
relaxation effects,'®

ut + 7u + [(CO + yx)u]x + 6uux + uxxx = 0’
with & = ¢,

1015 J. Math. Phys., Vol. 30, No. 5, May 1989

the cylindrical KdV equation,’

u, + (t/20u + 6uu, +u,,, =0, with h=0,
the equation with nonuniform terms,

u, +u+6uu, +u,, =yx/3, with h=0, and

the KdV equation for unidirectional waves in a channel of
gradually varying width 5(¢) and depth d(z),’

3 1 d 2
2u, + duu + — 3
where ¢? = gd, and if bd °/? is a constant, then it satisfies the
compatibility condition (2) with A= 0.
Concluding this final section, we remark that all the
cases considered in the literature''~!> are covered by condi-
tion (2) and that the slightly different equation

Uy + uL{bc) =

u, +a(x,t)u + b(x,t)u,
+ c(x,t)uu, +d(x,t)u,,, +e(xt)=0

has the PP if it is of the form (1) with (2) satisfied. Assum-
ing this, then Eq. (1) is essentially the KdV standard.
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It is shown that the triple sum series of Jucys and Bandzaitis [Angular Momentum Theory in
Quantum Physics (Vilnius, Mokslas, 1977)] for the 9j coefficient can be identified with a
formal triple hypergeometric series due to Lauricella-Saran—Srivastava [G. Lauricella, Rend.
Circ. Mat. Palermo 7, 111 (1893); L. Saran, Ganita 5, 77 (1954); H. M. Srivastava, Ganita §,

97 (1964)].
I. THEORY where a,b,...,i can take integral or half-integral values and
The conventional single sum expansion for the 9j coeffi-  the summation index k takes the values:
cient,' derivable from the fundamental theorem of recou- ) ) _
pling theory, is given by max(|a —i|,|d — h|,|b — f|])<k<min(a + id + h,b + /).
(2)
a b ¢
d e fi= ; (—)*2k+1) In (1), the coefficients on the rhs are the 6f coefficients that
g h i have been defined”? as sets of generalized hypergeometric
a d gl[b e h] {c f i functions of unit argument, ,F,(1)s. The simplest known
x h i klld k fllk a bl’ algebraic form, after a change of notation, for the 9; coeffi-
(1) cient, due to Jucys and Bandzaitis® is the triple sum series:
1
@ boc dag)(beh)(igh
¢ h (def)(bac)(ic
. (1l +x1,1 +x2,1 +x3,1 +y1,1 4+ y2,1 + 21,1 + 22,1 4+ pl)
(1 + x4,1 4+ x5,1 +y3,1 + y4,1 + y5,1 + 23,1 + z4,1 + 25,1 + p2,1 + p3)
5 1 (14 x2,x) (1 +x3x)(—x4,x) (= x5x) (1 +y1y) A +y20) (= y4p) (= )5))
X3z x!y!Z! ( ——xl,x) (1 +y3,y)
(A +222) (= 3,2) (= 24.2) (= 252) 1 (3)
(—zl,2) (—ply+2)(M1 +p2x+p)(1 +p3x+2)
I
where . P(xp,..) = DTE)- -, (7
O<x<min( —d + e+ fic +f—1) = XF, and the symbol (A,k) is defined as
O<y<min(g — h + i,b + e — h) = YF, (4)
0<z<min(a — b+ c,a+d—g) =ZF, (4,k) =T(4 + k)/T'(4)
xé=e+f—d xS=c+f—i, yl=~bte+h (h—k=(=D*/U0-4k), k<O (8)
V2=g+h—i y3=2h+1, yd=b+e—h, To identify the triple sum series in (3) with a triple hy-
yS=g—h+i zl=2a z22= —a+b+c, (5) Dbergeometric series, consider the product of the following
zZ3=a+d+g+1, z4=a+d—g 25=a—-b+yg, £5(1)'s:
pl=a+d—~h+i, p2=—b+d—f+h, F 14+x2 14x3 —x4—x5 1]
p3= —a+b—f+i —x1  14p2 14p3

1+yl 1432 —yd—yS5; 1]

and Wl —pt 142
(abe) = [(a—b+c)l(a+b~o) 1+22 —z23—z4 —z5 1]

.F[
(a+b+c+ 1D/ (—a+b+)V2 (6) Bl—zt —p1 1+p3
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T (1 +x2,x)(1 + x3,x)( — x4,x) ( — x5,x)
(—x1,x)(1+ p2,x) (1 + p3,x)
Sy (1 +2.0) (= y4p) (—¥5,)

A +y3 0 (—plyy(1 +p2,p)

(1+p2,x)(1+p2,y) by (14+p2,x+y),
(1+p3x)(1+p3,z) by (1+4p3,x+2),
(—=ply»)(—plz) by (—ply+2),

B g; xiptz! (10)

to make the identification with the triple sum series that

(9) occurs in (3) possible. The product of three ;F,(1)’s given
by (9) with the replacements given in (10) leads us now to
the new function:

(14 22,2)(—23,2) ( —24,2) (— 25,2)
(—z1z2)(—pl2)(1 +p3,2)
In (8), replace the pairs of products
]

F(})[(O)::(O);(O);(O):l +x2,1 + x3, — x4, — x5;1 + y1,1 + y2, — y4, — p5;1 + 22, — 23, — z4, — 25;1,1,1}
(0)21 4 p2; — p1;1 4+ p3: — x1;1 4+ p3; — 21 ’
which is a particular case of the function defined in three variables by Srivastava* and an elegant unification® of the triple
hypergeometric functions of Lauricella,® Saran,” and Srivastava.® It is to be noted that the new generalized hypergeometric
function in three variables ®*(a,;;8:,7..; W, ) defined by Wu,” is the same as F given in (11), which is a particular case of an

(11)

extremely general hypergeometric series defined in three variables by Srivastava* as

(b"):(e);
(f)y:g)

c");
640

b);
()

{c');

(3,[(a)::(b);
(g);

x,y,Z]
(e:(fy

((@),m +n+ p)((d),m + n){(6'),n + p){(b"),p+ m) _((c),m)(c),n){(c”),p)x"y"2°

where (a) denotes a sequence of parameters and we have
used the notation of Srivastava.*

Il. CONCLUSIONS

Finally, the identification of the triple sum series of
Jucys and Bandzaitis® for the 9j coefficient as a special case
of the triple hypergeometric series of Lauricella—-Saran—Sri-
vastava supersedes the claim of Wu® to his discovery of a
“new” generalized hypergeometric function in three vari-
ables. Furthermore, this identification has two immediate
consequences. They are (i) the possibility of studying,'° for
the first time, the polynomial zeros of 9; coefficients—a fea-
ture not revealed by the conventional single sum series (1);
and (ii) the numerical computation'! of the 9j coefficient
adapting the Horner scheme'? for the triple sum series,
which has been found to be faster by a factor of 2 to 4 over the
conventional method.

These aspects are beyond the scope of this note and are
dealt with in detail elsewhere.'® "
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Hamilton-Jacobi formalism for geodesics and geodesic deviations
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A formalism of integrating the equations of geodesics and of geodesic deviation is examined
based upon the Hamilton—Jacobi equation for geodesics. The latter equation has been extended
to the case of geodesic deviation and theorems analogous to Jacobi’s theorem on the complete
integral has been proved. As a result, a straightforward algorithm of integrating the geodesic
deviation equations on Riemannian (or pseudo-Riemannian) manifolds is obtained.

I. INTRODUCTION

In analytical dynamics, the method based upon the par-
tial differential equation due to Hamilton and Jacobi turns
out to be the most powerful way of explicitly solving the
equations of motion." Also in both the special and general
theory of relativity, in a number of physically interesting
cases, an analogous method employing the relativistic Ham-
ilton-Jacobi equation permits reducing the process of solv-
ing the equations of motion to quadratures. In particular,
this method is a very effective one when integrating the geo-
desic equations on manifolds being the space-times of the
general theory of relativity.?

The objective of this paper is to show that the method of
finding geodesics by solving the Hamilton-Jacobi equation
can be generalized in such a way that it also allows one to
obtain simultaneously with a solution of the geodesic equa-
tions the general solution of the equations of the geodesic
deviation on a given manifold. The physical significance of
the notion of geodesic deviation follows from the interpreta-
tion of the general theory of relativity. There, in the sense of a
thought experiment at least, it is the measurement of a geo-
desic deviation field defined along a geodesic world line that
enables one to detect some of the components of the curva-
ture of space-time, which are considered to be a measure of
strength of the gravitational field. The sole knowledge of a
single geodesic line, without any deviation field along it, can-
not on the other hand supply us with information of such a
type.*

In lectures on classical mechanics the Hamilton—-Jacobi
equation is usually derived as a result of searching for such
canonical transformations that make the motion look sim-
ple. It is the generating function of these transformations
that satisfies the Hamilton—Jacobi equation. There is known,
however, also another approach to this equation. Its starting
point is the action functional in Hamilton’s variational prin-
ciple. After one substitutes for the functional argument a
true motion being a solution to the Lagrange equations, the
action functional turns over into a function of coordinates
and time, called the principal function of Hamilton, which
must satisfy the Hamilton—Jacobi equation. A description of
this approach to the Hamilton-Jacobi equation of classical
dynamics is presented in Sec. II of the paper. The reason for
including this reviewing section was not only that an analo-
gous method would serve in the following sections to intro-
duce the Hamilton-Jacobi formalism dealing with the rela-
tivistic problems considered here, but also that it would help
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emphasize certain differences between the Hamilton-Jacobi
equations in the classical and in the relativistic mechanics,
respectively.

Section III contains the derivation of the Hamilton—Ja-
cobi equation for geodesics on manifolds, with the exclusion
of the case of null geodesics, and a discussion of the differ-
ences just mentioned. The Hamilton—Jacobi equations ob-
tained in Secs. IT and III are only formal relations that must
be satisfied by the two Hamilton’s principal functions, re-
spectively, and the meaning they have for the process of inte-
gration of the equations of motion does not at all follow from
their derivation. The same could also be said about the ca-
nonical transformation method of deriving this equation.
The significance of the Hamilton-Jacobi equation for dy-
namics results first from a theorem due to Jacobi on its com-
plete integral.” In the case of classical Newtonian dynamics
the proof of this theorem is given in nearly every textbook
and it would be superfluous to repeat it here. It must also be
noted that since the Hamilton—Jacobi equation for geodesics
can always be solved with respect to the time derivative S /
dt, the classical Jacobi theorem on the complete integral is
applicable to the relativistic case as well. Such a justification
is, however, not manifestly relativistically covariant, and
may leave one with a feeling of dissatisfaction when com-
parison is made with the beautiful geometric form of the
equation itself; especially that there is no difficulty in formu-
lating a theorem of this kind in a manifestly covariant way.
The formulation and proof of such a theorem are presented
in Sec. IV of the paper. The theorem, besides its obvious
methodological advantage for the problem of geodesics con-
sidered for its own sake, is a starting point to a generalization
enhancing both geodesics and geodesic deviations, which is
the main goal of the paper.

The approach to the Hamilton-Jacobi equation present-
ed in Secs. IT and III is in Sec. V applied to a variational
principle that was already formulated a few years ago® and
which leads to both the geodesic and the geodesic deviation
equations simultaneously. It turns out that in this case the
principal function must fulfill not one but two relations that
by analogy with the cases in former sections may be called
the Hamilton—Jacobi equations of the dynamical system
consisting of geodesic lines and deviation vector fields deter-
mined along these lines. Section VI contains the formulation
and proofs of theorems that can be considered as an exten-
sion of the classical Jacobi theorem on the complete integral
to the case of the equations of geodesic deviation.
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The main result of the paper is an algorithm solving the
geodesic deviation equations in cases when one knows a
complete integral of the Hamilton-Jacobi equation for the
problem of geodesics. A characteristic feature of this algo-
rithm, of some practical importance, is that solving the geo-
desic deviation equations with the help of this method does
not require any new integration nor any knowledge of the
connection nor curvature coefficients on the given manifold.
All that is needed for this procedure is computing derivatives
and solving an algebraic system of linear equations.

The whole work makes use of the standard variational
principle in which the action is the proper time measured
along the world line, this being the functional argument.
This variational principle determines a geodesic in an arbi-
trary parametrization. In the literature’® one can also en-
counter another action principle, sometimes called the dy-
namic action principle, the variation of which leads directly
to the geodesic equations in an affine parametrization. Since
this action principle has some supporters, in Appendix A the
formalism considered in the paper has been discussed from
the point of view of this second principle as well. For the sake
of sole computations the two variational principles are of
course completely equivalent to each other. From an ortho-
dox geometric or relativistic point of view, however, the ac-
tion principle appearing in the main body of the paper must
be considered as the only physically correct one, for the oth-
er principle requires introducing into the formalism an addi-
tional element that is completely superfluous at a rigorously
relativistic formulation of the problem. A fuller presentation
of such a standpoint is given in Appendix A.

The paper neglects completely the case of deviations
between null geodesics, as it calls for an entirely different
approach that is going to be a subject of another paper by the
author.

{l. HAMILTON-JACOB! EQUATION VERSUS THE
ACTION PRINCIPLE

The subject of this section is a Newtonian dynamical
theory bas 4 upon an action of the form

STq] =f'L(q(t>,q<r>, ¢)d, @21

where g(2) = {¢'(?), . . ., ¢"(2))is a set of functions of time ¢
that describes in a configuration space @, the motion of a
mechanical system characterized by a Lagrange function L,
and where ¢ = dq/dt.

As is customary, the notion of the variation of the mo-
tion g(¢) is introduced as a one-parametric family of func-
tions g(t, €), where t € (¢, t,) and €€ (€, €, ), that satisfy (i)
certain regularity requirements,® (ii) the conditions ¢(¢, 0)

=q(?), q(t;, €) = q(¢;) fori =0, 1. The variation vector &
(also called an infinitesimal variation, or just a variation of
q) is then defined to be a vector whose components are

k

Sq"=ai(z, 0) b, (2.2)

de

where &€ is an arbitrary increment of the value of €. Similar-
ly, a variation of the time ¢ is a one-parametric family of
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functions ?(€) satisfying conditions analogous to (i) and
(ii), and the variation vector associated with this family is

dt
5t =—(0)6e. (2.3)
de
A complete infinitesimal variation 8¢(¢), a variation of the
motion with the variation of time, is in turn constructed in
terms of 5g* and 6t as

8q% = 8¢* + ¢* bt. (2.4)

These definitions enable one to compute the complete vari-
ation &S of the action (2.1):

58 = L6t|"+f 5 Ldt
- |G- (G-,
ak t

1)
N AR ATV
ty 8q" dt aqk

The expression above may serve various purposes.

First of all, as 1s well known, it can be applied, in the
special case of 6 =0 and 8g = 0 at the boundary, to the
derivation of the equations of motion from the stationary
action principie or, in the more general case, to the proof of
the Noether identities.

Another, perhaps less known application of Eq. (2.5) is
an old method, going back to Hamilton, of deriving the form
of the Hamilton—Jacobi equation, which in the majority of
lectures on mechanics is nowadays being derived by a differ-
ent approach, based upon the canonical formalism. The old
method, however, has turned out to be a very useful one in
relativistic mechanics and some examples of such applica-
tions will be presented in the paper. That is why a general
outline of deriving the Hamilton—Jacobi equation from an
action functional of the form (2.1) is being reviewed in the
present section. The purpose is not only to set up a general
framework, but also to enable one to make a comparison
between the classical and the relativistic cases that are dis-
cussed in the following sections.

The starting point of the Hamilton approach is con-
structing from the action functional (2.1) the so-called prin-
cipal function S(g, t) (cf. Ref. 5). If (g, t,) is a point in the
space of events (i.e., in the product of the configuration
space and the time axis) and (g, ¢) is another point, belong-
ing to a sufficiently close neighborhood of (g, #,), then from
the uniqueness theorem of solutions of differential equations
it follows that through the two points (gy,Z,) and (g, ¢) there
is exactly one solution of the Lagrange equations, provided
the Lagrangian L is sufficiently regular. Assuming that (gq,,
t,) is given, the values of the principal function at any point
(g. t) from a sufficiently close neighborhood of (g, ,) can
thus be computed from (2.1) as a result of both substituting
for ¢q(¢#) in the integrand the unique motion that passes
through the points (g, £,) and (g, ) and replacing at the
same time the value ¢, in the upper limit of the integral in
(2.1) by the value ¢. Owing to this procedure, the differential
dS(q, t) of the principal function is given by Eq. (2.5), in
which one must take into account that ¢ (¢) satisfies the
Lagrange equations. Additionally, making in Eq. (2.5) use

(2.5)
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of the definitions of the conjugated momenta, p, = dL /g,
and of the Hamiltonian H{(q, p, ), one obtains

ds = p, d¢* — H(¢", p,, t)dt. (2.6)

On comparing now the coefficients in this expression to the
appropriate derivatives of S, one derives the equations

as as
'_k(q9 I)ZPA(% t)) _(q9 t)= _H(q,P(qy t)9 t)’
q ot
2.7
which result in the single relationship
98(g, 1) _ ﬁH(q, 98(g, 1) z) (2.8)
at dq

being the Hamilton—Jacobi equation that must be satisfied
by the principal function S(g, t). Of course, the method of
deriving Eq. (2.8) presented here results in a formal rela-
tionship for a very special function only and from a more
general point of view is inferior to the method based on ca-
nonical transformations that reveal the beautiful dynamical
meaning of every solution of Eq. (2.8). Nevertheless, in ap-
plications into which the canonical formalism would carry
in complexities of its own, the principal function method can
be used as a short cut when deriving the form of the Hamil-
ton~Jacobi equation. The value of the so derived equation as
a method of finding solutions to the equations of motion is,
however, first established after one proves a theorem of the
type of the Jacobi theorem about a complete integral of Eq.
(2.8). In the case of a dynamical system defined by an action
principle of the form (2.1), this well-known theorem is
quoted here just for completeness and future reference.
Theorem 2.1 (Jacobi): If a function S: @, X R"+!

—R, defined in the form S = S(g*, a*, t), where a* (for
k=1,..., n)areindependent parameters, is a complete in-
tegral of Eq. (2.8), then the system of equations

S & mo
w(q , a7, t) =a, (2‘9)
where a;, [ =1, . . ., n, are some new parameters, defines in
an implicit way » functions &, : R***! R such that (i) the

relations
g*=£41d\a,,) (2.10)

satisfy identically Eqs. (2.9); (ii) they enable one to deter-
mine » new functions 7,: R***! - R, given as

= (td, a,):

=—(§ (¢, a', a; ), ) t), (2.11)

a k
and for any values of a*, ,, the dynamical variables of ¢*,
p; defined by Eqgs. (2.10) and (2.11), respectively, are solu-
tions to the Hamilton equations of motion of the dynamical
problem defined by the action (2.1).

IN. THE CASE OF GEODESICS

Let (M, g.5) be a four-dimensional pseudo-Rieman-
nian space-time manifold of signature — 2 in which yis a
timelike curve described in a coordinate map by four func-
tions £* of an arbitrary real parameter 7€ [ 7, 7, ] in the form

=&*(7).
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The action functional is

Uly] =f (8apb°EP) 1 dr,

where £&* = d£° /dr. The variations of &° and 7 are defined
in analogy to Egs. (2.2) and (2.3) as

8¢ =

Similarly as in Sec. I1, one defines the complete variation §£*
of £ with the variation of the parameter 7 by means of the
relation

BEC=08E% 4 £ 6T, (3.3)

The corresponding complete variation of the action
(3.1) can then be brought to the form

— gaﬁgﬁ
(5050)1/2 "

_ gaﬁ§ ) a
f (@ Enre %"

Now, in a similar way as in Sec. II, the principal func-
tion U(x“, 7) can be constructed, and because of Eq. (3.4)
its differential is

3.1

%" 1 0)se, 81 =T (0)6€. (3.2)
de Je

1

8

(3.4)

gaﬁgﬁ a
— (§ gp)m (3.5)
p
Hence
W _ st U_, (3.6)

ox” (§p§")‘/2’ ar

These relations correspond to Eqs. (2.7). Now, however,
instead of the Hamilton-Jacobi equation (2.8) we have a
trivial relation dU /3t = 0, which is, strictly speaking, the
Hamilton-Jacobi equation for geodesics. Additionally, the
derivatives JU /9x“ are, in accordance with Egs. (3.6), com-
ponents of a unit vector and thus the following constraint
condition is satisfied:

p U U _ 1, (3.7)
Ix® IxP

supplying us with an additional, but now nontrivial restric-

tion on the derivatives of U.

The derivation of Eq. (3.7) presented here reveals only
that this equation must be satisfied by the principal function
obtained from the action (3.1), but gives one no hint about
its dynamical significance. It can, however, always be solved
with respect to dU /0x° and written in a form analogous to
Eq. (2.8),i.e., in a form to which Theorem 2.1 is applicable.
And this supplies one with an argument that justifies the
widely known dynamical application of Eq. (3.7) as of the
Hamilton—Jacobi equation in relativity. Solving (3.7) with
respect to U /3x° and making use of the nonrelativistic
Theorem 2.1 spoil, unfortunately, the manifest relativistic
covariance of Eq. (3.7). It is, however, possible to prove a
theorem of a kind of Theorem 2.1 that is manifestly relativis-
tic and geometric in its form. Such an theorem is presented in
the next section. Its application to relativistic dynamics is in
general simpler than that of Theorem 2.1. The new theorem
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also forms a basis of a method of the Hamilton-Jacobi type
of salving the equations of geodesic deviation that is present-
ed in this paper.

{V. THE JACOBI THEOREM FOR GEODESICS

Let Eq. (3.7) be considered now as a partial differential
equation on a scalar function U: M - R, which is defined ina
coordinate map of the space-time M by a relation of the form
U= U(x%).

Definition 4.1: A function U: M XR? R, defined in a
coordinate map of the manifold M by an equation of the
form

U= U(x% da"), 4.1)

wherea* (k = 1,2, 3) are three parameters taken from some
open intervals I ,, €R, is called a complete integral of the
partial differential equation (3.7) iff (i) the function U(x“,
a* ) satisfies Eq. (3.7) identically for all admissible values of
the parameters a*, (ii) the 4 X 3 matrix (d2U /dx* da*) is of
rank 3.

Remarks: (1) The knowledge of a complete integral of a
partial differential equation permits one to reconstruct the
equation. This can easily be seen by noting that as a result of
differentiating Eq. (4.1) with respect to x® one obtains four
relations that involve the coordinates x*, parameters a*, and
derivatives dU /dx" . Then, due to the property (ii) of Defini-
tion 4.1, one can eliminate from these relations all three pa-
rameters a* and one is left with a single relationship of the
form ¥ (x*,dU /dx) = 0. This relationship, in virtue of the
property (i), must be equivalent to the differential equation
(3.7).

(2) The parameters a* are independent of the coordi-
nates x*. In the sequel it is thus assumed that under transfor-
mations of the coordinates x* the parameters a* are scalars.
This property is, however, independent of the fact that one
can always replace the parameters g* in Eq. (4.1) by some
new parameters being a result of a nonsingular transforma-
tion applied to the old set of a*’s

Theorem 4.1: Let the function (4.1) be a complete inte-
gral of the partial differential equation (3.7), then the sys-
tem of algebraic equations

AU(x%, a*)
da*
where a, are some new parameters taken from certain real
intervals, determines four functions £*: R’ - R which are a
coordinate description of a family of world lines I',
x® = E%f(n), a", a)) 4.3)

where f'is an arbitrary monotonous function of a parameter
7, and the functions £* are such that'®

=ak’ (4.2)

@ Yer,am a,))=a,, (4.4)
da
(ii) there exists a function 4 = A(7) such that
/i(r)g—(xi(é"(r, a a)),a,,)
a k d v k
=g,uv(§ (Tya ral))_d;_—é_ (T:a 9a1)) (45)
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(iii) every world line from the family (4.3) is a geodesic
parametrized by an arbitrary parameter 7

D d ...
;[gag(s*“(r, %)) (g =(r, o a,n]

A(T) « d pay m
= 7 s ,a",a,)), (4.6
A(T) gau(§ (T’a al))_‘_i:(g (T a,a )) ( )

(iv) the functions fin Eq. (4.3) and 4 in Eq. (4.5) satisfy the
relation

YD _ )
dr
iff the new parameters s = f(7) is the proper time along the
geodesic (4.3).
Proof: The set of equations (4.4) can be supplemented
by an equation of the form

4.7)

e(x*% a*) =7, (4.8)

where 7 is an additional parameter independent of x* and of
all the other parameters introduced so far, and the function
@ is chosen in such a way that the extended, 4 X 4 matrix
( U dp )
Ox* da*  Ix™

is nonsingular. Due to Definition 4.1 (ii), such a function ¢
always exists. Moreover, the extended matrix will be nonsin-
gular for any function ® = f¢ @, where £ R—R is an arbi-
trary function'! such that f* #0. Thus there are four algebra-
ic equations, i.e., Egs. (4.2) and the equation

d(x? a*) = f(1), (4.9)

which can locally be solved with respect to x*, giving as a
result Eqs. (4.3). The values of the so derived functions £~
must, of course, satisfy the identities

%(g“(f(r),a", a,), a™)=a,. (4.10)

Since the function (4.1) is a complete integral of Eq.
(3.7), it fulfills identically the equation ’
o AU(x*, a*) AU(x", a') _ |
ax® ox*?
which means that the covariant vector U /dx“ is timelike.
Differentiating Eq. (4.11) with respect to ¢*, one obtains
s OU au
Ix* dx” da*
Thethree (k = 1,2, 3) vectors d2U /9x® da* are, because of
Definition 4.1 (ii), linearly independent, and therefore, due
to Eq. (4.12), all three of them are spacelike. Thus also the
four vectors
au aU
Ix=  9xB Jak
are linearly independent.
On the other hand, after differentiating Eq. (4.10) with
respect to 7, one obtains
U de-
Ox* da* dr
Due to Eqgs. (4.12), the linear independence of the vectors
(4.13), and to the fact that the number of space-time dimen-

) (4.11)

=0. (4.12)

(4.13)

=0. (4.14)
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sions is limited by four, the vectors g, ;£” and dU /dx* must
be parallel to each other, although the corresponding pro-
portionality factor A may vary from one point to another.
And this is just the statement which forms the contents of
Eq. (4.5).

Substituting Eq. (4.5) into (4.11), one-obtains the rela-
tion

(dS(T))2 a2

dr

which results in Eq. (4.7).

Now, in accordance with Eq. (4.5), one can compute
the left-hand side of Eq. (4.6) as follows:

£<g¢(§(. ) %ﬁ)

(4.15)

dr
=zgx%(§(. ),a )+i(gf(§ ))) %

where also Eq. (4. 11) has been taken into account. This
proves the validity of Eq. (4.5) and ends the proof of
Theorem 4.1.

Remarks: (1) Equation (4.4) can of course also be re-
garded as the statement that the functions dU /da* are con-
stants of the motion of the geodesic equations (4.6).

(2) From the fact that the four vectors (4.13) are linear-
ly independent one can conclude that the complete integral
U(x?, a* ) itself can be used instead of an arbitrary function
@ in Eq. (4.9). In such a case, due to Eq. (4.5) one obtains

i:ﬂ:a_{]_dga ()aﬁaU&U
dr dr 9x* dr ax* Ix?

which in accordance with (4.7) means that the family of
geodesics

A(r), (4.16)

X = £%(s — 50 @, @), 4.17)

derived as the unique solution of the set of equations

au(x* a*)
da*

is the general solution of the geodesic equations parame-
trized by the natural parameter s. This solution depends, as it
should, on seven arbitrary constants s,, @*, and a;, which is
in agreement with the fact that a non-null geodesic is unique-
ly given by specifying four independent coordinates of its
initial point and, due to the condition g,z u* #* = 1, three
independent components 4 of its initial tangent vector.

Thus, if one is interested in formulating a theorem anal-
ogous to Theorem 4.1, but for the case of natural parametri-
zation, it can be easily done by replacing Eqgs. (4.2) with Egs.
(4.18), and by substituting all over in Theorem 4.1 both
s — s, for the function f{+) and unity for A (7).

It should be noted that Theorem 4.1 as well as the last
remark apply only to non-null geodesics. The null case re-
quires a separate discussion that will be presented in another
paper.

=a,, U(x% d*) =5 —s, (4.18)
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V. THE GEODESIC DEVIATION

As was already noted in Ref. 6, the equations that deter-
mine the law of evolution of geodesic deviation vector r(+)
alonga geodesic y: x* = £* () parametrized by an arbitrary
parameter 7 can be derived together with the geodesic equa-
tions from a unified variational principle based upon the ac-
tion functional

Dr*

S[y,r]=fdrgaﬁ(§) ..§a = (5.1)

(§p§p)l/2 dr

In this functional, the four functions £* () determine, in a
coordinate system {x“ }, a curve which joins two fixed points
Po and p, with the coordinates £* (7,) and &% (7,), respec-
tively; and the functions 7* (7) are components of a vector
r(7) from the tangent space at the point £ (7). The vari-
ation of (5.1) with respect to the variables 7* (7) leads to
the equations of geodesics on £ (1), whereas with respect to
£% (), it leads to the equations of the geodesic deviation on
(1), both, respectively, in an arbitrary parametrization.

In this section, equations will be derived that are satis-
fied by the principal function determined by the action
(5.1). Similarly as previously stated, one starts with the defi-
nitions of the ordinary variations 3§“ , 6", and &7,

66 = 3§a (r,0), &

ar’ or
=—(7,0), 6r=—(7,0).
ae(r ) T ae(r )

(5.2)
The complete variations 6% and §7* are then determined by
the equations
SE =86+ EbT, SrF =8+ 67 (5.3)
As aresult of a computation, which can be facilitated by
using the concept of covariant variation described, e.g., in
Ref. 6, one obtains
1 ( Dr?

(gpgp)l/Z aB " dr

+ T2, r §B)6§“

KE)

1 . T
- W 8apb £ 6

_J [[ ((5};&:)”2 ?:)

aﬁy&§ ryé«&

(§p§p)l/2
D 1 =
¥ ’ﬂ__ a
+r aff d’f( (g_pg.p)ljz)] 5§
D{ . \sx
algam)™)
where

has = 8ap — £abp/ (.60 (5.5)
is the projection tensor on the hyperplane orthogonal to £°.
In the special case, when the variation of the parameter
vanishes, 57 = 0, and when the variations 6% and 67* are
independent and are vanishing for 7 being equal to both 7,
and 7, the requirement 6S = 0 is equivalent to the system of

(5.4)
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equations that simultaneously describe geodesics and geo-
desic deviation in an arbitrary parametrization (cf. Ref. 6),
that is to the equations

g

D by D 1 ps
;(WZ;) TGy Rt =0
(5.7)

where the field quantities entering the coefficients in Eq.
(5.7) are to be evaluated along the solutions of Eq. (5.6).
To start with determining the principal function corre-
sponding to the action functional (5.1), consider a family of
geodesics x* = £% (7) all of which for r = 7, pass through
the same point £° (7). Along every one of these geodesics
consider further a family of geodesic deviation vector fields
with the components »* = 7 (7) such that every one of its
members assumes the same value 7* () at the point £% (1),
a value that is also the same for all the other geodesics pass-
ing through £ (7,). Every one of these geodesics together
with a fixed geodesic deviation field along it defines a curve
T, in the tangent bundle TM over M, i.e., a curve that passes
through a point in TM with the local coordinates (£* (7,),
r* (75)). This family serves the construction of the principal
function S. Its value S(x*, 7#, 7) is given by the integral
(5.1) in that the upper limit is replaced by the value 7 taken
from the argument of S, and the integral is, furthermore,
calculated along the curve T, in TM which joins the point
(E% (74), P2 (1)) with the point (x*, 7 ) whose coordinates
enter the argument of S. (It is tacitly assumed that the two
points are close enough to each other to ensure the unique-
ness of the construction, which is therefore in such a sense a
local one.) Then, due to the assumption that T, satisfies
Egs. (5.6) and (5.7), the integrand in Eq. (5.4) vanishes
and the differential of the principal function S is equal to

(5.6)

and

1 DF# — u
T G R
&’ dr® (5.8)
+gaﬁ+—— . .
(é-pé-p)ln
This implies that
as . as _ £
G g S ey
? (5.9)
s__ 1 (, Dr

B .
)
o (FFE )N gy T g
Since the right-hand sides of Egs. (5.9), as is easily seen, are
not independent, the left-hand sides must satisfy certain rela-
tions. As a result, besides the trivial equation dS /dr = 0, one
obtains two other equations,

op 05 S _

—1, 5.10)
o o (

ws 95 (05 _pu w95)_ (5.11)
ar*\ox* ar

that must be fulfilled by the principal function S(x=, ). By
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analogy with the derivation demonstrated in Secs. Il and I11,
one can expect that Eqgs. (5.10) and (5.11) will play the role
of the Hamilton—Jacobi equation for the simultaneous prob-
lem of geodesics and geodesic deviations in space-time. This
expectation, however, will be first confirmed by theorems
formulated in the following section. The behavior of Eq.
(5.11) under transformations of coordinates is briefly dis-
cussed in Appendix B.

VI. THEOREMS ON INTEGRATING THE GEODESIC
DEVIATION EQUATIONS

Equations (5.10) and (5.11) will now be treated as a
simultaneous set of partial differential equations of the first
order on a single unknown function S defined in a region of
the tangent bundle TM over the space-time manifold M. Ina
coordinate system {x“ } the values of the function S are equal
to S (x*, 7*) and depend on eight variables x*, ¥, where
are natural components of an arbitrary vector » from the
tangent space 7, M at a point p with the coordinates x“.

Definition 6.1: A function S: M X R°— R, defined in a
coordinate map of the manifold M by an equation of the form

S =S8(x° 1 o b, (6.1)

where @* and b' (k, I=1, 2, 3) are six parameters taken
from some open real intervals, is called a complete integral of
the simultaneous set of differential equations (5.10) and
(5.11) iff (i) the function S(x%, /2, a*, b') is a simultaneous
solution of Egs. (5.10) and (5.11) for all admissible values
of the parameters a*, b'; (ii) the 8 X 6 matrix

axs azs
Ix* da*  Ax* b’
M, = 92s 925 (6.2)
ar’ da* ar’ b’
is of rank 6.

From this definition it does not, of course, follow that
such a first integral really exists. Its existence results, how-
ever, from the subsequent theorem.

Theorem 6.1: Every complete integral U(x*, a* ) of Eq.
(3.7) generates a complete integral S(x*, #, a*, b') of the
simultaneous set of differential equations (5.10) and (5.11),
which is of the form

S(x* %" b)) = ﬂ(x", ar + -‘?-g(x", abs. (6.3)
ax° aa’

Proof: From Eq. (6.3) it follows at once that
3 _ou
e ax’
which implies that Eq. (5.10) can simply be reduced to Eq.
(3.7) and is thereby satisfied by the function (6.3).
Similarly, Eq. (6.3) gives
as _ 4 v, 9%
A Ix"Ix” dx° da*
After substituting Eqs. (6.4) and (6.5) into Eq. (5.11), one
has to take into account that the second covariant deriva-
tives of a scalar function commute, U,z = U, . Moreover,

one must make use of Eq. (4.11) and of equations that are its
consequence, that is, of Eq. (4.12) and the equation

(6.4)

b*. (6.5)
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e ou (g:g) —o. (6.6)
Asa result of all that, one obtains
B BS(aS I é’S)

rF\ox? art

au ( U au aUu
B b s __ Fp 0r¢7 ___)
=g Ox” Ix° IxP da* P g
2

=gaaﬂ(ﬂ) U 8T . o

Ix\IxP) . x® 3xP da*

which shows that the function (6.3) solves Eq. (5.11) as
well.

To verify that the function (6.3) is a complete integral
of Egs. (5.10) and (5.11), one must additionally evaluate
the elements of the matrix (6.2) for S given by Eq. (6.3). An
obvious computation leads to

3%s a:u
Ox* da*  Ix* da’
Mgy, s = 32U s (6.7)
T — O
Ix da*

where O stands for the zero4 X 3 matrix. Since d 2U /dx* da*
are three linearly independent four-dimensional vectors, the
columns of the matrix (6.7) form six linearly independent
eight-dimensional vectors and hence in the case considered
the matrix (6.2) is of rank 6. This concludes the proof of
Theorem 6.1.

Theorem 6.2: If the function S(x“, ¥4, a*, b' ) is given by
Eq. (6.3), where the function U(x%, a*) is a complete inte-
gral of Eq. (3.7), then the following conclusions are valid.

(1) The equations

35 _3U .
ab*  da*
determine in accordance with Theorem 4.1 a family of geo-
desics parametrized by a* and a;, k, =1, 2, 3 which is

described by the equations

k=1,2,3, (6.8)

I
Q') = ay,

x*=£f(n), a’, a;). (6.9)
(i1) The equations

_.aé;.(.(é'/l(r’ ak’al)’ rv’ am’bn)zﬁky k=1) 2; 3)
ﬁr"=u(f), (6.10)
ar”

where 3, are some additional parameters taken from certain
real intervals, and u (7) is an arbitrary (but considered as an
a priori fixed) function, can locally be solved with respect to
r. As a result, they determine uniquely four functions p*
such that the equations

By 1(7)) (6.11)

define, for constant values of the parameters a*, a,, 4™, B,,
a vector field » along the geodesic that is chosen from the
family (6.9) by specifying the same as in (6.1), and in
(6.11), values of the parameters a* and ;.

(iii) The vector fields p® determined by Eq. (6.11) sat-
isfy the following three conditions.

r=pr,ad\a,b™

1024 J. Math. Phys., Vol. 30, No. 5, May 1989

35 Do _
a dr

where the derivatives dS /dr* are evaluated for x* and *
satisfying Eqgs. (6.9) and (6.11), respectively. Moreover, in
virture of (4.5) and (6.4), Eq. (6.12) is equivalent to

(a) a(r), (6.12)

8as ‘if: ZPT =4, (6.13)
o E o re S
+u(r)g"”a’ﬂ’ -
~10¢|(33) 7+ seraa
+itr)g 25 L (6.14)

where all the functions of x* and #* are evaluated in accor-
dance with Egs. (6.9) and (6.11), respectively,

sza dé—ﬂ d§8
R* r45

dr’ P8 dr P dr
/l Dp*

d&°
+ — ( ) 6.15
"1 dr dr\up/ dr’ ( )
where the curvature tensor is taken at points whose coordi-
nates satisfy Egs. (6.9).
Proof: From Eq. (6.3) it follows that Eq. (6.8) is equiva-
lent to (4.2) and conclusion (i) of the theorem is therefore a
consequence of Theorem 4.1.
Due to Egs. (6.3) and (6.4), Egs. (6.10) can be rewrit-
ten in the form
U
Ix° da*

2 aUu
r+ L bszﬁk’

— " =pu(7),
da* da’ ox° K

(6.16)

in which none of the coefficients depends on 7. Thus Eqgs.
(6.16) form a set of four algebraic linear equations on four
unknowns 77. In virtue of the assumption of the theorem, the
vectors (4.13) are linearly independent and the determinant
of the set (6.16) is different from zero, which proves the
existence and uniqueness of the solution (6.11).

To prove Eq. (6.13), take the absolute derivative with
respect to 7 of the relation

au
A—=p%=Au,

W —pi=Ap
which is a consequence of the second of Egs. (6.16) and of
(6.11). Making use of Egs. (4.5), (4.6), and again of (4.5),
one obtains
U o, 49U D"
ax“ dx® dr
and from here, with the help of the second of Egs. (6.16),
one derives the equation

A = Ap + A,

9U Dp” _

Ix® dr (6.17)

that is equivalent to Eq. (6.13).
Asaresultof Egs. (6.10), the D /drderivative of 4S /da*
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vanishes when evaluated for the solution (6.11). On the oth-
er hand, with the aid of (6.3), this derivative can be repre-
sented in the form

(35) d’U Dp° _D_( U ) o
da* Ix° da* dr Ix° da*
U dee

(6.18)

+ 5/ :
Ox® da’ da* dr

Dueto Egs. (4.5) and a relation that follows from covariant-
ly differentiating Eq. (4.12), the second term in the expres-
sion (6.18) is equal to

_D_( 9*U ):( 39U ) de-
dr \ 9x° da* Ix°da* ). dr
U aU)
— , 6.19
Ix* da* (c?xﬁ o (.19

while a replacement for the third term in Eq. (6.18) can be
found in accordance with the identity

= — Ag*®

d ( Ju aU)

0= 8 —

da* & Ix® 3o’ 8xP
_go_ U U 9V

9x* da* Ja' AxP Ix® da' Ix? da*’

which again is a simple consequence of Eq. (4.12). On sum-

ming up all that was just stated, one can bring Eq. (6.18) to
au

the form
2 v bl =o.
dr — A [(axﬂ) + Ix? da’ ”

aru [ Dp~
9x° da*

Comparing now the equation above with Eq. (4.12) and
taking into account that the vectors (4.13) are linearly inde-
pendent, one infers that the expression in the curly brackets
is proportional to the vector g*? U /dxP or, in other words,
there exists a function z2(7) such that

Dp* aU U
Ry
dr (mg ox? P ox? da’

+ (7)g™" VR
Contracting this expression with U /dx* and making use of
Eqgs. (4.11), (4.12), (6.6), and (6.17), one easily obtains
that zz(7) = (1), thus proving the validity of Eq. (6.14).

To verify Eq. (6.15), one must compute the absolute
derivative with respect to 7 of both sides of Eq. (6.14). Tak-
ing into account Eqgs. (4.5) and (4.6), one can obtain the
relation

dr* A dr | dr /1 x|,

[ [gaﬁ(axﬂ) i«

BaU ]}
€ S Fad .

=§

(6.20)

=¢

The first term in the curly bracket here can be expressed in
the form (after U,, = U, is taken into account)
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2,4

reo(2) 2,
ax° B8 dr
while the second term can be computed with the aid of a
simple consequence of Eq. (6.6), rendering

D( ., U ,) 92U (aU) ,

L b') = — Ag™ b

dr (g" xP da’ & ax* da’ P
(6.22)

Now, after substituting for Dp°/dr in the last term of Eq.
(6.21) the right-hand side of Eq. (6.14), and after making
use of Eq. (6.6), the right-hand sides of Eqgs. (6.21) and
(6.22) can in turn be substituted into Eq. (6.20). The out-
come is

Dy _ADy, d(n)det
A

(6.21)

dr* A dr dr dr
+ A %g*%g V"(jf) (%)w P~ (6.23)
The last term here can be expressed in the form
U\ (U
5" (ae), (50,
=[5el5). 27,
— g (gg);pﬁ % gv. (6.24)

The first term in Eq. (6.24) vanishes due to Eq. (6.6) and in
the second term use can be made of Eq. (4.5). As a result,
from Egs. (6.23) and (6.24) one obtains

D*p* l Dp* +i(ﬁ> d¢*
a7 A dr dr\A/ dr
U au dév
(), )
& 0x°/.py 0x°/ .8 i dr
(6.25)

Applying now the Ricci identity to the expression in the
square bracket and using once again Eq. (4.5) permit one to
bring Eq. (6.25) to the final form given by Eq. (6.15), thus
completing the proof of Theorem 6.2.

Remark: In virtue of conclusion (iii ¢) of Theorem 2,
the first three equations (6.10) mean of course that the func-
tions dS /da* are first integrals of the equations of the geodes-
ic deviation between geodesics belonging to the family deter-
mined by the complete integral U, which enters the
definition (6.3) of S.

VIi. AN ALGORITHM OF SOLVING THE GEODESIC
DEVIATION EQUATIONS

As was shown in Ref. 6, Eq. (6.15) is a geodesic devi-
ation equation in the situation when the parameters along
the two geodesics, the basic and neighboring ones, are arbi-
trary and independent of each other. The function A in Eq.
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(6.15) determines in accordance with Eq. (4.7) the param-
eter 7 along the basic geodesic ¥ in terms of its proper time s
(if A = const, 7is an affine parameter). Due to the second of
Egs. (6.10), the function  in (6.15) on the other hand de-
termines the evolution along ¥ of the scalar product of the
unit vector tangent to ¥ and the deviation vector r. Since the
deviation vector is defined as “joining” the points with the
same numeric values of the parameters at the two neighbor-
ing geodesics, respectively, the function x could indirectly
determine the second, independent parameter along the
neighboring geodesic in terms of the proper time evaluated
there. (In Ref. 6 it is shown that A = const, 1 = const corre-
spond to a situation in which the two geodesics are parame-
trized by two different affine parameters, while in the case of
A = const, ¢ = const the two affine parameters are exactly
the same; i.e., along each of the two geodesics the corre-
sponding A is proportional to the respective As with exactly
the same proportionality factor. Of course, 7=y iff
A=u=0.)

Assume now that one is given a single geodesic world
line described by the equation

xa=§a(7,) (71)

and also that one knows a complete integral U(x“, a*) of Eq.
(3.7). From Eq. (7.1) one can find the corresponding func-
tion A in the form

A7) = (8aplE"(M)EE7) 2 (72)
where & = d¢ /dr. Suppose further that one is interested in
finding along the geodesic (7.1) a vector field 7 satisfying
Egs. (6.15) in which u(7) is a given function. [In practice,
the most frequent case is that of £ =0 in which ris a deviation
vector between two geodesics parametrized by the same pa-
rameter 7. By the last statement one understands simply that
the norms (7.2) of the tangent vectors along the two geode-
sics are given by the same function A(7).] The procedure of
finding the solution of Egs. (6.15) consists then of the fol-
lowing steps.

(i) Determining such a set of values of the parameters
7o a*, and @, for which the general solution (4.3) defined by
the known complete integral U(x“, a*) will turn over into
the world line (7.1).

(ii) Evaluating the coefficients in the system of equa-
tions (6.16) along the basic geodesic (7.1).

(iii) Solving the so derived algebraic linear equations
for four unknowns .

To perform step (i), one must compare the right-hand
sides of Egs. (7.1) and (4.3), and also the corresponding
expressions for their first d /dr derivatives. As a result, one
can uniquely determine the values of the seven constants 7,
a*, and a, for which Egs. (4.3) turn over into (7.1). In step
(ii) one computes the derivatives of U that enter Egs. (6.16)
and evaluates them along the world line (7.1) for the values
of a* found in step (i). Equations (6.16) then turn into

arv .., /

——§ (1), a' ) +

2
oU be
Ix° Ja*

daaa’ ~Pe

(7.3)
a—l{,(ﬁ"(r), a')yr’ = p(r).
ax
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In these equations 7 are four unknowns, &° and 3, are arbi-
trary constants, and all the other quantities are known func-
tions of 7. In virtue of Theorem 6.2, Egs. (7.3) admit a solu-
tion of the form

=p(1, b% B)),

which satisfies Eqs. (6.15). The six arbitrary constants b*,
[3; can always be expressed in terms of the initial values of
and Dr° /dr for 7 = 7,. Doing this, one must, however, take
into account that the second of Egs. (7.3) and its D /dr de-
rivative provide us with two constraint conditions on #* and
Dre sdr.

Thus the algorithm of solving Eqgs. (6.15) formulated
now requires only computing derivatives and solving a sys-
tem of linear algebraic equations, and does not assume any
knowledge of the explicit form of the connection and curva-
ture, in opposition to when one was solving Egs. (6.15) di-
rectly.

In the special case when the two neighboring geodesics
are parametrized by the proper time s, the basic geodesic
(7.1) must be selected from the family (4.17) which is deter-
mined by solving the system of equations (4.18). The equa-
tions of geodesic deviation can then be obtained from Egs.
(6.15) by assuming that A and g in these equations accept
constant values (cf. Ref. 6). The respective modification of
the algorithm of finding the geodesic deviation reduces then
in this special case to solving Eqgs. (7.3) with u being a con-
stant (or being even zero if the geodesic deviation vector is to
be orthogonal to the vector dé* /ds). Details of the algo-
rithm for the proper time parametrization, although without
proofs, were already reported by the author'? some time ago.

An application of the procedure derived here will be
published in a subsequent paper.'*
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APPENDIX A: AN ALTERNATE VERSION OF THE
FORMALISM

As is known, the equations of geodesics can be derived
not only from a variational principle based upon the func-
tional (3.1), but also from that starting with the action’

1

Wiyl =3 (A1)

gaB§ a§ s dT'
There is, however, an important difference between the two
actions, (3.1) and (A1). The first is invariant under repara-
metrizations defined by arbitrary monotonous and differen-
tiable functions: 7’ = f{7), f’ #0, whereas the second admits
only adding a constant € to the parameter 7' = 7+ €. In
other words, the group of invariance of (3.1) is formed by all
the diffeomorphisms of the one-dimensional manifold repre-
sented by the geodesic line treated as a set of points, while
that of (A1) is a one-parametric Abelian Lie group acting
along a geodesic endowed with an affine parameter. Since in
accordance with the theory of relativity it is the world line
understood as a locus of points that is physically significant,
and not a world line as a parametrized curve with a selected
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special parametrization along it, the action (3.1) is in my
opinion physically preferable to that given by (A1l). True
enough, the action (A1) leads to both null and non-null
geodesics, while the homogeneous action (3.1) leads to the
non-null ones only. I do not, however, consider this as a
significant property, for first, it is not too difficult to formu-
late a homogeneous action enhancing all geodesics,'* and
second, even with the action (A1) the null case still shows
some singular features.

Nevertheless the action (A1), perhaps due to its simi-
larity to the Newtonian action, is used quite commonly (cf.
Ref. 8). It seems therefore to be useful to demonstrate how
the algorithm formulated in the paper can be applied for this
other case as well.

In the notation of Sec. I11, the complete variation of the
action (Al) is

W= (g,.E"86% — 1g, EFEYSTY|T

D S NTFea
- _T(gapgp)ag dT’
and the differential of the principal function W{(x“, 7) deter-
mined by (A1) reads as

dW = gyvél‘v dx* — %guvé.‘ﬂgv dr.
Thus

aW_ F: B 8W 2 uEv

axa— aﬂ§ ’ a = 2 ;ng §

and the Hamilton—Jacobi equation has the form
W _ 1 usdWIW
ar 27 x*axf’
This is an equation of exactly the same form as Eq. (2.8)
(with 7 now playing the role of the absolute time) and can
with the help of Theorem 1.1 determine a solution of the
geodesic equations, provided it admits a complete integral

W(x“,a”, 7) that depends on four parameters ¢” and satis-
fies the condition

det( I°W )#O.

Ix* daP

(A2)

(A3)

Since the functions g** do not depend explicitly on 7, one can
expect the complete integral of (A2) to be of the form

W(x? aP, 1) = — ht + Wy(x°, a h), (A4)

where @° = £ is a constant. The function W, must then satis-
fy the equation

oW, W,

pY "o Y7o

& Ix* IxP

which for & #0and W, = |k |"/>U(x*, a* ) reduces itself to
Eq. (3.7). Thus in the non-null case the complete integrals
W(x*, a®, 1) and U(x“, a*) of Egs. (A2) and (3.7), re-
spectively, are mutually related,

W%, d?, 1) = —a°r + |a°|"2U(x%, d¥). (A6)

Asaresult, every complete integral of Egs. (3.7) determines
a complete integral of Eqs. (A2), and also the other way
around. (In particular, for ¢°= 1, 7=15.) Moreover, the
equations

=h, (A5)
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oW -~
—_— aa? A7
E (AT)

which due to Theorem 1.1 determine the motion, reduce
themselves to Eqgs. (4.18) after the parameters &@,, s, and s,
are set to be

ak =a, laol —1/2,

§=2|a°|""?r, so= 0|42,

(A8)
and this in principle shows the equivalence of the two ap-
proaches of finding solutions to the equations of geodesics.

The separation of the “absolute time” 7 done in (A6)
produces a decomposition of the space M X R, being the do-
main of the function W, into the real line R (the space of the
parameter 7) and the space-time M being the domain of U.
In other words, in the present formalism a relativistic world
line plays an analogous role to a Newtonian trajectory, with
the only difference that now the “space of trajectories” is the
four-dimensional space-time M.

The null case, excluded from the consideration, requires
a separate discussion that will not be pursued here.

The action leading simultaneously to the geodesic and
the geodesic deviation equations in the formalism consid-
ered in this Appendix can be derived, in accordance with the
general rule,'’ from the action (A1). It is equal to

"D
f[y,r]:f gaﬁ§a;d‘f’

and replaces in the present approach the action (5.1) with
the important difference that (5.1) was invariant both under
arbitrary reparametrizations, 7' = f(r), f'#0, and under
changes of gauge of the form,'® ¥* = r* 4 #°(r)&*, where
fand & were arbitrary functions, while (A9) is invariant
only under translations of the parameter 7' =7+ ¢,
e =const, and under transformations of the form
P =r" 4+ Au“, A = const.

In the notation of Sec. V, the complete variation of the
action (A9) is

—2a,|a

(A9)

57 =(8us %’—ﬂ 4T ayrrgﬁ)sga

To

+gaB§a_—6T

[

D <,
[(gaB d1’2 + RaByﬁgﬁrygs + gpa

x 2w r.
dr

)6§ s —6»'9] (A10)

Since due to (A 10) the differential of the principal function
F(x*, ¥, 7) determined by (A9) is of the form

Dr? ,,
45 = (gag o +T ayrygﬁ)dé
+gal)’§ dra —gaﬁga

X&—ﬁ dr,

All
dr ¢ )

we have
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9.7 D
gaB —+ r a'yr §B’

Ix* dr
af

—g, A2
EY3 =g B§ ( )
ay 8
87' gaﬁ 5

Eliminating from these equations the variables &* and Dr* /
dr, we obtain the Hamilton—Jacobi equation for the dynami-
cal system determined by the action (A9)

9 B(af_ay AT

ar & ox*  Jx" a r“} oxf

As usual, a function . (x*, P2, 7, a”, b® ) depending on
eight additional parameters a” and 4° is called a complete
integral of the differential equation (A13) iff

(i) it is a solution of Eq. (A13) for any values of the
parameters g and b from a suitably defined domain;

(ii) the 8 X 8 matrix

(A13)

%7 92y
x*da’ Ix*3b°
Mys = 9r7 = Jr¥” (Al4)
I dar 3P Ib°
is of rank 8.

The equivalence of the formalisms based on Egs. (5.10)
and (5.11) on one side and on (A13) on the other follows
from the next two theorems.

Theorem Al: For every complete integral W(x,d?, 7)
of Egs. (A2) the function

F(x°, rﬂa7 b%, 1)

(x a’, r)f’+‘; (x* a® 1)b° (A15)
isa complete integral of Eqgs. (A13).

Proof: The proof is completely analogous to that of
Theorem 6.1. First, one can directly show that for the func-
tion given by (A15) the matrix (A14) is nonsingular pro-
vided the function Win (A15) satisfies the condition (A3).
Second, by a simple computation one can check that the
function % determined by (A15) satisfies Eq. (A13) iff the
function W is a solution of Eq. (A2).

Theorem A2: If the function (A15) is defined in terms of
a function W given by the relation (A4), then the equations

4  ~

_ (A16)
ab“

a

are equivalent to Egs. (A7) [and by the same to (4.18)],
and

¥ -
P

to Egs. (6.16) provided that the parameters 3, and the func-
tion p(7) are set in (6.16) to be

1 /(- a,b’
Bi =[TO",72— B YA

u(s) =?:13(s—s0)b°——asb°+ﬁo.

(A17)

(A18)

(A19)
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Proof: The equivalence of (A16) and (A7) follows from
immediately differentiating (A15) with respect to 5%. To
prove the remaining part of the theorem, one must first sub-
stitute (A4) into (A15) and then differentiate it with re-
spect to @ and a°. The resulting equations are the same as
the equations obtained from substituting (A18) and (A19)
into Egs. (6.16), which in principle proves the equivalence
of the approaches based upon Egs. (6.16) and (A17), re-
spectively.

Remark: It should be noted that the substitution of
(A18) into Egs. (6.16) amounts simply to a redefinition of
the integration constants when passing from one of the two
approaches to the other, whereas the substitution of (A19)
is a restriction on the function y, which in Egs. (6.16) was
arbitrary. It is connected with the fact that the formalism in
the main body of the paper deals with geodesics parame-
trized arbitrarily, while the formalism in this Appendix uses
affine parametrization. Therefore, before one could even
talk about the equivalence of the two approaches, a restric-
tion to a linear function (A19) was needed. This is in agree-
ment with the result (cf. Ref. 6) that 4 = const in Eqgs.
(6.16) describes two neighboring geodesics parametrized by
two (possibly different) affine parameters. These affine pa-
rameters are in particular the same if the integration con-
stant 5° = 0 (i.e., 2 = 0). Moreover, the basic line (and for
b° =0 also the neighboring one) is parametrized by the
proper time s if additionally ° = 1.

APPENDIX B: THE GRADIENT OPERATOR ON THE
TANGENT BUNDLE

The Hamilton—Jacobi equations (5.11) and (A13) con-
tain terms depending explicity on the affine connection coef-
ficients of the space-time manifold M. At first sight, this
circumstance may give rise to some doubts concerning the
covariance of these equations. The connection coefficients
do appear here; however, mainly due to the fact that the
scalar function S (or %, respectively) in these Hamilton—
Jacobi equations depends not only on points of the manifold
M but in addition also on a vector field on M. And the trans-
formation properties of the derivatives of such a function are
more involved than those of a function depending on points
on M only.

To examine this question in detail, let us assume that in
local coordinates our function takes the values S(x%, )
and that under nonsingular coordinate transformations of
the form

x¥ =X%(x%), (B1)
= ox* r, (B2)
Ix*
we have
S(x%, ) = S(x°, ¥¥). (B3)

By differentiating this equality with respect to x*', substitut-
ing the inverse transformations to (B1) and (B2) in place of
the arguments at the right-hand side of (B3), and using the
chain rule, one obtains

as _ax* as  ax”
ax*  Ix* Ix* Ix°

ox_as
ax* Ix¥ OrP

v, (B4)
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where x* = X% (x?") denotes the inverse transformation to
(B1). Formula (B4) gives a transformation rule of the
quantities dS /9x* and demonstrates that they do not form,
in the case considered now, any geometric object at all. Mak-
ing, however, use of the transformation rule of the connec-
tion coefficients, one can instead easily show that the quanti-
ties
S S o as
or?
are components of a covariant vector that can be considered
as a generalization of the gradient of a function of the form
S =S(x*, ). On the other hand, it can be immediately
shown that the derivatives 45 /d7* of such a function are still
components of a covariant vector. This elucidates the trans-
formation properties of all the quantities entering the Hamil-
ton—Jacobi equations (5.11) and (A13).

The derivative (B5) can be generalized to the case of
all tensor valued functions of the form T* -,

=T* 5  (x*,r"), where T* -,  are components of a
tensor of any valence. By a procedure analogous to that lead-
ing to (B5), it can easily be shown that it is not the covariant
derivative 7% -5, but the expression

6T .. - T ...

o e el g0
that is a tensor in the case considered now.

The generalization (B5) of the gradient of a scalar func-
tion finds a nice geometric interpretation in the formalism of
fiber bundles. Let 7'M be the tangent bundle over M with the
bundle projection 7: TM — M. As is known, a connection on
M defines n-dimensional horizontal subspaces H, of the tan-
gent spaces T, (TM) at all points g€ TM (cf., e.g., Ref. 9, pp.
53and 54). A one-formon T*, (TM) iscalled horizontalifit
vanishes on all vertical vectors, i.e., vectors from T, (TM)/
H,. Let S be a differentiable function on 7M. In analogy to
the definition of the differential of a function on the manifold
M, I propose to call a one-form on TM a horizontal differen-
tial d,,.S of the function S: TM - R iff (i) d,, S is a horizontal
one-form; (ii) for every vector t€ H,

(th’t)=t[S]’ (B7)
where the angular brackets on the left-hand side denote the

dual pairing of forms from T*, (TM) with vectors from
T, (TM), and the quantity on the right is a functional value

(B5)

(B6)
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resulting from the action of a vector # on S. In terms of local
coordinates {(x%, )} on TM, the horizontal space H,, is
spanned by its basis vectors

r .

ar#
From here and from its definition, it follows that in the coor-
dinate basis the horizontal differential is given by the expres-
sion

th = ﬁ dxa,
ox*

where the quantity 85 /6x“ is just that defined by Eq. (BS5).
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All directing fields that are polynomial in the (n—1) velocity are geodesic
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It is proven that all directing fields that are polynomial in the (n — 1) velocities & { are, in fact,
cubic in these variables; so that they are geodesic directing fields (projective structures). This
result, in conjunction with previously published work, entails that (n — 1) forces must be
nonpolynomial in the (n — 1) velocities. A large class of acceleration fields that give rise to
directing fields is briefly discussed in order to illustrate the source of this nonpolynomial

behavior.

I. ACCELERATION AND DIRECTING FIELDS

Let M be an n-dimensional C* manifold. A curve ele-
ment of order & at peM is an equivalence class j§ ¥ of curves
through p that have the same Taylor expansion with respect
to some (and hence every) coordinate chart (U,x) , up to
and including order k& at OcR. A path element of order k at
PEM is an equivalence class of paths js& consisting of all
paths corresponding to curves in j ¥, where ye£.

A second-order curve element j3 ¥ has local coordinates
¥, and ¥}, called n velocity and # acceleration, respectively,
and given by

; d _; i d?
= — xlo 0 , =
" 7 r(0), 7 TE
A second-order path element j2¢ has local coordinates £ §
and £%, called (n — 1) velocity and (n — 1) acceleration,
respectively, and given by

x'oy(0). (1)

d*xoy

a_ dx%0y '
(dx"o»}/)2 P

1 — ’
dx"oy |,

§5= (2)

Under a change of coordinate chart from (U,x), to (U,%) "
the coordinates of j3 ¥ transform according to

h=Xrh Th=Xjyh + X vt (3)
and the coordinates of j2£ transform according to

£

X+ X2ED /(XN +X1ED) (4)

and
E5 = (X5 + X, E067 +2X 1 €%
+X0)/(X 5+ X677
—ET(X 68 + X, E067 +2X ) &0
+ X5/ (X5 + X067 (5)
where X = xox~ .

Denote by .#} (M) and .2 (M) the bundles of first-
and second-order curve elements and by &Z'(M) and
Z?(M) the bundles of first- and second-order path ele-
ments. In each case, the bundle of second-order elements can
be regarded as a bundle over the corresponding bundle of
first-order elements.
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An acceleration field is a cross section
A:L} (M)—-L3(M). Such a field is described in terms of
local coordinates by functions 4  (x',7} ) that transform un-
der a change of coordinates according to

AL (FF)) =X (x5 (1) + X (xDYirE. (6)
An acceleration field is called geodesic iff for every peM,
there LS some coordinate chart (U,X), such that the func-
tions 4 5 (X7, ) vanish at p. A geodesic acceleration field is
denoted by I'" and has the special functional form

T (i) = — Th(xDvirt (N

A directing field is a cross section =: D' (M) - D?*(M).
Such a field is described in terms of local coordinates by

functions 5 (x',£ ¥) that transform under a change of coor-
dinate chart according to

E5(RED)
= [X; (B (xET) + X5 (xNEET

+2X 2, (xNEL + X5, (XN /(X 5 (%)

+ X ONETN - EF[X(NZL(xET)

+ X, (KERET +2X 7, (xNEF

+ X5, (N /X2 (x) + XL(xDETP (8)
A directing field is called goedesic iff for every peM, there is
some coordinate chart (U,x), such that the functions

Z2(X\,£%) vanish at p. A geodesic acceleration field is de-
noted by II and has the special functional form

5 (x'\&5)
= EF(I, (xNEFET + 2T, (x)ER + T, (X))
— (M5, (xDERET + 20T, (xHEL + T, (xD), (D)
where the projective coefficients IT;, (x') are traceless so
that IT;, (x') and IT},, (x') may be elminated from (9).

An acceleration field 4 determines a directing field Ziff
A is of the form (Ref. 1, see Theorem 3.1)

AL (x) =B )Y+ ClxEn), (10)
where

C"(x",/ly‘i) =/12C’(xi,;/ﬁ). (11)
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. GEODESICITY OF DIRECTING FIELDS THAT ARE
POLYNOMIAL IN THE (n—1) VELOCITIES

The theorem proved in this section was conjectured by
Ehlers and Kéhler (Ref. 2, see Theorem 1). It is also an
extension of a theorem proved by us (Ref. 3, see Theorem 3),
which states that a directing field 25 (x',£ ¢) that is cubic in
the (n — 1) velocities £ { is geodesic.

Theorem 1: If n > 1, a directing field =5 (x',£¢) that is
polynominal in the (n — 1) velocities £ § with respect to all
coordinate charts is, in fact, cubic in the (n — 1) velocities
& §, and hence is geodesic.

Proof: A directing field E that is polynomial in the
(n — 1) velocities £ with respect to coordinate chart
(U,x), for a neighborhood of peM has the form

ES(XET) =AX) + A5(xNET + AG 5 (XNEFER:
+AGpp (XNERE PED 4 -

+ AL g (XN (12)

Since the argument proceeds on a pointwise basis, the de-
pendence on the variables x' may be suppressed and the coef-
ficients (4 %45 ,...4 5,...5 ) of (12) may be regarded as giv-
en fixed constants, which determine the directing field with
respect to the coordinate chart (U,x), at peM. To find the
functions E5 (£ {) that describe the directing field with re-
spect to some other coordinate chart (U,X) p» substitute (12)

into (8) and reexpress £ ¢ in terms of £ ¢ using the inverse of
(4), namely,

=X+ XEED/(X + XGED) (13)

and

X0+ XrEr=Xn+X2E0)"" (14)

The factors (X + X 2£7) ~2in (5) clearly yield acommon
factor (X + X “£7)? in the result; consequently, the only
conceivable nonpolynomial terms in the result arise from the
terms in the expression (12) for £5 (£ §) that are of degree 3
or more in £ ¥. One obtains the result

EIED =X, —EXn )X+ X0EDV X0+ X2ED)
+2(X2, —ESXI )X + X2 ETIXE + X5 ET)

+ (X, —ESX ) (XD + X2 ED (XD + X2 ED)

+ (X3 _377;,)[,;8()(: +HXLEP XL+ XL ED)

+ASXL +XOED (X + X0 ET)
+ AL, (X0 +XOET) (XD + X0ED)

X5+ X0EDV X+ XRED) (XD + XRED)

+45 >
PrP203 (X:-{—X;é‘}’)
+‘..
(Xﬁ‘+X’;'—°‘)"‘(Xf:'+XZ’_a’)
+45., EAR - £0 | (15)
' X7+ X580~

By hypothesis, the field 22 (£ ¢) must be a polynomial in the variables & { for all possible coordinate choices. For a given fixed
point peM, the coefficients (4 *,4 5, ,...4 5 .5 ) are constants, but the quantities £},X ;, and X, are variables that may be
freely chosen. By bringing the last (» — 2) terms to a common denominator, one obtains the constraint
(X7 + X780 2B+ BJES + BL, L4080 + B, E0E0E0)

= (X5 —EiXp) A5, (X +X0E) (X2 + XREP)V (X7 + XIET)

AL (X XDED) (X + XOEM X + XGED) !
+ .o
+ AL, (XE+XEED) (XY +XTED ] (16)

The terms of degree (r + 1) yield
(X5E1) B}, ERERER

{ -
The right-hand side of this equation is proportional to £ .
The left-hand side is proportional to & § iff

= —EXp[A8. L X0ED - XREP(XEY) ] Bg,, =46,C,, +8,C,, +6.C,.). (18)
Af Xﬁ‘—”""Xﬂ‘_a‘ X"ET) -4 e
i e 53 S T(X 35T Substitution of (18) into (17) yields
+ AL XEET XTET X EY (XED-C,, ERER

+ AL XDED - XTET]. (amn = —Xp[A8.  XOET - XBEPXIEY) 3
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+AL G XOET XREXED)
+ .o

g O Y Pr—1F— Y nE
+Ag.p XGET X ETTX ST

+AL L XDETXTET]. (19)
Each term in this equation except the last one explicitly con-
tains the factor X ;E_’{ Without restricting the variables X ;
in any way, choose £ | so that X 7£ 7 = 0. Note that such a
choice restricts the orientation but not the magnitude of the
“vector” E“l’ . Since the X7 are arbitrary, the variables

£ =X % £# may still be freely chosen. With this choice, one
obtains from (19) the constraint

XpAl X0 EQXPET=0. (20)
IfA4% ., has the form
A0, = U/NBEE,. .,
+ 5/ﬁ;rEpl"'pr-2pr—l + +5ngp:"'p,p. ), (21)

then the left side of (20) vanishes because it too contains the
factor X }£ 1 since

XiX2 L XrXn=0. (22)
If4% .., doesnot have the form (21), then the factor X ;E v
is not present. Since the variables {* =X ;E“? may be freely
chosen, it follows from (20) that

Xpab. =0 (23)
But, the X 5 may also be freely chosen. It follows that
Ag‘..pr=o. (24)

If 47 .., has the form (21), then every term of (19) con-

tains the factor X ;E 7, which could, therefore, have been
divided out at the start to yield the constraint

(XIET)3C, , ERES
= —X,[A48  XOET - XDETXIED ™!
+ AL XRED - XREG(XNEY) S

+ o
+ AL, XGEDXGET]
+X’:Ep|...pr 'X?-E[l""'Xﬁ’,‘;',ET"'zo, (25

Every term of this equation except the last two explicitly
contains the factor X ;£ 7. If £ | is chosen as before to make
X &Y vanish, one obtains the constraint
—XpA e, XEET XY
+XLE,. ., XOE0- X0 EUo=0. (26)

Again, there are two possibilities to consider. If 45 ..
has the form

A% ={1/(r—DINSE

PV P P 2Py
+ 65, lEpI'“pr— WP, o2 + o + 65:EP\"'PP 21 )’
(27)
the iirst term of (26) will vanish because it contains a factor
X 7£7 in which case one obtains

PEFO L VP L ET
E ,.Xo'l, ll Xo’,, ,é‘lr

PP,

Pr

Pr.1

'=0. (28)
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Since the variables X géf may be freely chosen, it follows
that

E, ., =0 (29)
If45 .., doesnot have the form (27), then the first term
of (26) will not contain a factor X ;‘,5_“ ¥ and since the variable

=X ;’,z“f may be freely chosen, one obtains

—YgAgl...pr—l +EP|"'P,,.1 =O (30)
Since the variables X 5 may also be freely chosen, it follows
that4% ., ~=OandhencethatE, .,  =0.Inallcases,

it follows that (24) holds, that is, the polynomial has degree
1 less than the degree r that was assumed.

The above argument can be repeated to show that all of
the coefficients of (12) for degree greater than 3 must vanish
and that the coefficients for degree 3 must have the form

Ao, =Y Epp + 8B, + 6B, ). (30

20203
The directing field is then given by
BS(ED) =A°+AGEV + AGp EVED + ETE, 5 ERER
(32)
As we have shown before (Ref. 3, see Theorem 3), a
directing field o£ this form may be put into the form (9) as
follows. Define 4 by

A2 =242 184, A=[l/(n+1)]42, (33)
andZZlP: by

Aglp: =24 Z|Pz + 5:-’4;): + 553‘4#-’

A, =[1/(n+1)]45,. (34)
One finds that

A2=A4, and A%, =4, (35)

The directing field (32) can be put into the form (9) by
making the identifications

EPIP: = H:NP:’ A Zipz = - HZIP:’

:‘i‘;: ——n[rfp’ A%= _Hiyxn, (36)
from which follow (recall that I1;, = 0)

A= —.Hcaxn =I—I::M’ Ap= _ngznl':p' (37)

Il (7—1) FORCES ARE NONPOLYNOMIAL IN THE
(n—1) VELOCITIES

In a previous paper,* we proved that, in the context of a
conformal causal structure, (a) any acceleration field, such
that its n force is orthogonal to the n velocity, uniquely de-
composes into the sum of a symmetric affine structure that is
compatible with the conformal structure and an z force, and
(b) any directing field, such that the »n force of the corre-
sponding family of acceleration fields is due to tensor fields
and is orthogonal to the » velocity, uniquely decomposes
into the sum of a projective structure (geodesic directing
field) that is compatible with the conformal structure and an
(n — 1) force.

If the (n — 1) force were polynomial in the (n — 1) ve-
locities £ ¢ in all coordinate systems, then by the theorem
proved in the previous section it would have to be cubic and
have a form such that the “total” directing field is also geo-
desic. This total geodesic directing field must also be compa-
tible with the conformal structure of space-time in the sense
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that no solution paths can “break the light barrier.” The
corresponding n force is then required to have the form given
by Eq. (81) of Ref. 4; however, such an » force cannot satisfy
the orthogonality condition (necessary for the absence of
variable rest masses) unless it vanishes identically. It follows
that the (n — 1) force must be nonpolynomial in the
(n — 1) velocities & .

The source of this nonpolynomial behavior is illustrated
by the large class of acceleration fields, each projective
equivalence class of which is determined by the standard
representative

A’2(7"1) = (grs’)/;yﬁ)]/zT}I’yi'——Hj‘:‘/:y!;-yji:
+ (gr&‘)/’I'}/; )_I/ZTJI:L]-J"}/{"}/J;”}//i‘ 4

+(gu¥ i) KT vy,
(38)

where g;, is the space-time metric tensor, the IT; J, are the
projective coefficients, and the
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Tijr s, =85 T34, (39)
are tensors that are antisymmetrized on the first two indices
and then symmetrized on the last r indices so that

8 le"'fk =0
and

(40)

74 =0. (41)
For the directing field determined by (38), each of the
(n — 1} force terms will contain a power, either negative or

fractional, of (g,,, +8,,£% + &8,,£4£7) that is not polyno-
mial in the {(n — 1) velocities.

'R. A. Coleman and H. Korte, J. Math. Phys. 25, 3513 (1984).

2J. Ehlers and E. Kéhler, J. Math. Phys. 18, 2014 (1977).

*R. A. Coleman and H. Korte, J. Math. Phys. 21, 1340 (1980); 23, 345 (E)
(1982). .

“R. A. Coleman and H. Korte, J. Math. Phys. 28, 1492 (1987).
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A collection of algebras with product that preserves the metric of the underlying vector space
is investigated. It is shown that this collection includes the generalized quaternions, the
composition algebras, and the algebra of color. All the algebras in this collection that are either
commutative or alternative are determined; the ramifications of nondegenerate metrics are
detailed. If the algebra is alternative and not of dimension 1, 2, 4, or 8 over the base field, the

metric must be degenerate.

I. INTRODUCTION

There are three approaches used to analyze the struc-
ture of a vector space with metric; these approaches are
based on the theories of either Lie algebras, Clifford alge-
bras, or Cayley algebras. There are many interconnections
between these theories, and any detailed analysis should uti-
lize elements of all three theories. This paper will concen-
trate on the non-Lie theory, particularly on the role of qua-
dratic algebras in these theories.

Quadratic algebras have enjoyed an almost continuous
presence in physics literature since the discovery of the qua-
ternion division ring by Sir William Rowan Hamilton on
October 16, 1843.! Clifford, following Hamilton’s success
with the quaternions, generalized them to any dimension in
the universal Clifford algebra.”? While the Clifford algebras
are all associative, they are not all quadratic algebras; how-
ever, all Clifford algebras are constructed from quadratic
algebras. An extensive bibliography on research in Clifford
algebras is available.” (See also Ref. 4.)

Nonassociative quadratic algebras appeared in the liter-
ature as early as 1845°; the eight-dimensional alternative di-
vision algebra (appearing in the literature as octonions, Cay-
ley numbers, Cayley—Graves numbers, or octaves) is a
quadratic division algebra, as are all algebras constructed via
the Cayley-Dickson process. For a review of octonions in
physics literature, see Wene,® and Sorgsepp and Lohmus.’
Noting that the dimensions of the Clifford algebras and
those constructed via the Cayley—Dickson process are pow-
ers of two, Wene® gives a construction relating both algebras.

Because of a growing interest in quadratic algebras,
especially those of dimension not a power of two over the
scalar field (Domokos and Kovesi-Domokos,*® Plebanski
and Przanowski,'®'' and Wene'*'%), a better understand-
ing of the algebraic properties of quadratic algebras and their
relation to the underlying vector space is desirable. We work
in the setting of nonassociative quadratic algebras construct-
ed from a vector space with a metric. Our main result con-
cerns alternative algebras, and therefore completely de-
scribes the generalized quaterions in Refs. 10, 11, and 15.

Let V' be an n-dimensional vector space over the field F
of real numbers R or complex numbers C. Let ./ be an alter-
native algebra that is the vector space sum

o =FeoV, (n
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where e is the identity of &/ and vveF for all vin V. Then this
product induces a quadratic form on &/, N (a), and an asso-
ciated bilinear form,

B(a,b) = [N(a + b) — N(a) — N(b)]/2. (2)
The algebra &7 is the vector space sum
o =CeN, (3)

where .4 is a nilideal that is the nilradical of .« and
N ={aed/|B(ax) =0 forall x in &} (4)

The bilinear form B restricted to % is nondegenerate, and ¢
is one of the following: (i) F, (ii) Feo F, the algebra direct
sum, (iii) ¢, the complex numbers, (iv) F(2), the ring of
2X 2 matrices over F, (v) H, the quaternion division ring,
(vi) &, the octonions, or (vii) the split octonions.

Thus if the bilinear form is nondegenerate, the alterna-
tive algebra ./ must be one of these seven algebras. If & is
associative, we have only five possible algebras.

If the algebra .« is alternative, and the dimension of V
over Fisnot 1, 3, or 7, then the bilinear form (2) is degener-
ate. One of the few discussions of algebras associated with
degenerate bilinear forms is that of Ablamowicz.'®!’

The construction in Sec. IT assumes only that the vector
space ¥ has a metric defined on it. A construction that as-
sumes a vector space with an anticommuting product de-
fined on it is given by Czerwinski'® and Osborn.'® In Sec. III
we derive general results for flexible quadratic algebras, and
in Sec. IV we apply these results to the varieties of communi-
cative algebras and alternative algebras.

All algebras will be finite dimensional over the field F,
where Fis either R or C.

Il. THE CONSTRUCTION

Let e;,i = 1,2,...,n be a basis for the vector space V over
R, the field of real numbers, and let

(5a)
(5b)

be two arbitrary vectors of that space. A symmetric bilinear
form G:V X VR,

is called a metric (or metric form) of the given basis and its

X =x'e,

Y=y,
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coefficients g;; are called the metric coefficients of that basis.
We will also use G to denote the matrix (g) ; of the form G.

A functional Q: ¥V X V>R is quadratic if the map B:
V X V- R, defined by

BX,Y)=[QX+7Y) - Q0(X) —Q2(N1/2, (1

is a bilinear form on V. It therefore makes no difference
whatsoever in principle whether one considers symmetric
bilinear or quadratic forms, for any statement about qua-
dratic forms can be reformulated as a statement about sym-
metric bilinear forms, and vice versa. We say that Q(X) has
property P if and only if B(X,Y) has property P.

The metric G is called positive definite if

gijx';l’j> 0, (8)
for all (x',...,x") # (0,0,...,0). Here G is positive if
gijxiyj> 0) (9)

for all (x',...,x"). Similar definitions hold for negative defi-
nite and negative metrics. If there is some vector X in V and

GX,Y) =0, (10)

for all Y and V, then G is said to be degenerate.

Let G:V X V- R be a metric and G its matrix relative to
the basis e;,i = 1,2,...,n. Then G is nondegenerate if and only
if the determinant |G | #0. If G, denotes the / X i submatrix of
G in the upper left-hand corner of G, is positive definite if and
only if for each i = 1,2,...,n, then

IG,| > 0. (11)

Equivalently, G is positive definite if and only if all of its
eigenvalues are positive. There exists a change of basis for V'
over R, such that the matrix of G relative to this new basis
will be a diagonal matrix D with diagonal entries — 1, + 1,
or 0. If G is nondegenerate, then all diagonal entries of D will
be nonzero.

A direct transfer of these concepts to the case of the
ground field C is impossible, since the field C cannot be or-
dered by a positive class P. We proceed in a more intricate
way.

For any complex number z, Z will denote the conjugate
of z. The symmetric bilinear functional G: ¥ X V- R is re-
placed by a sesquilinear functional S: V X V- C, i.e., a func-
tional that is linear in the first argument and semilinear in
the second argument,

S(aX + BY,Z) =aS(X,Z) + BS(Y,Z), (12)
S(X,Y+Z) =S(X,Y) + S(X,Z), (13)
S(X,aY) = aS(X,Y), (14)

for any vectors X, Y, Zin Vand all @, B in C. A sesquilinear
functional S is said to be Hermitian if

For a Hermitian functional, the number S(X,X) is real for

all vectors in V. Therefore the question of its sign is meaning-
ful and we say that S is positive definite if

S(X,X) >0, (16)

for any nonzero vector X of the space V. We note that the
associated form B: V X V= R, where
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B(X,Y) = [S(X,Y) +S(Y.X)]/2,

is real, bilinear, and symmetric.

Let V' be an n-dimensional vector space over R(X) and
G: V X V- R(C) a symmetric bilinear (sesquilinear) form
on V. Choose abasis ¢;, i = 1,2,...,n such that G is given by a
diagnonal matrix with entries — 1, + 1,0r0( 4 1 or0). Let
&/ be any (n + 1)-dimensional algebra with identity e over
R(C) which is the vector space direct sum

o =Reo V, (18)

such that for each v in V,oo=G(v,v)e. The set

es=-ee,i=12,..n will be a basis for .&/ over R(C). Call

the elements of V vectors, and the elements of Re scalars.
For xe/, x = ae + v, aeR, and veV, we have

(ae +v)? — [2a(ae) +v] + [@®* — G(v,v)]Je=0. (19)
If we set T(ae) = a, N(ae) =a?, and N(v) = — G(v,v)
for all in R and all v in ¥, then for each xe.&/, we have

x? —2T(x)x + N(x)e =0, (20)
where T(x) = aand N(x) = a*> — G(v,v) = a® + N(v) are
scalars.

The qualities 7(x) and N(x) are called the trace and

norm of x, respectively. The trace is a linear functional on
&/ . The symmetric bilinear form N(x,y) defined on .« by

7

N(x,y) = [N(x+y) —Nx) —Ny»)1/2, 21)
satisfies
N(upw) = — G(uw) = — (uv+vu)/2, (22)

forall u, vin V. Call N(x) nondegenerate if N(x,x) is. Clear-
ly N(x,y) is nondegenerate if and only if G is.

An algebra o/ with identity e satisfying Eq. (20) is
called a quadratic algebra.

Theorem 1: Each algebra o constructed above is qua-
dratic.

Example 1: Minkowski space with metricg,, = 0, u #v,
g., = (1,—1,—1,— 1) can be constructed as an algebra
from R * with the usual metric 4,, = §,, by setting

G(x,y) = [N(x+y) — N(x) —N(») /2. (23)
If # and v are vectors (in R ?), then
G(uw) = — H(u,w). (24)

As we will see later, our construction gives us a simple
algebra in all cases. If we insist that the algebra be alterna-
tive, we will have constructed the (associative)ring of real
22 matrices. The associative case with the related light
cone is discussed by Ilamed and Salingaros.?®

The next section reviews some facts about quadratic al-
gebras.

11l. QUADRATIC ALGEBRAS

A general theory of quadratic algebras has yet to be de-
veloped; the interested reader is referred to the appropriate
sections of the books by Braun and Koecher,?' Schafer,??
and Zhevlakov, Slin’ko, Shestakov, and Shorshov,?? as well
as Refs. 18 and 19.

While a general theory is lacking, there is considerable
literature concerning quadratic algebras that are alternative.
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The alternative quadratic algebras include the composition
algebras and all associative algebras. Quadratic algebras in
which the map x —X = 27T (x)e — x defines an involution are
called Cayley algebras by Boubaki,?' and are discussed in
many places in the literature.

The class of quadratic is closed under the operations of
forming subalgebras and homomorphic images; it is not
closed under the formation of complete direct sums, as we
will see in Theorem 2, and therefore it is not a variety of
algebras.

Quantum mechanical operators are often identified
with sets of pairwise orthogonal idempotent elements in an
algebra. An element f # 0 is idempotent if /> = f, and idem-
potents fand g are orthogonal if fg = 0 = g /. We see that a
quadratic algebra can have, at most, two pairwise orthogo-
nal idempotents.

Theorem 2: Let . be a quadratic algebra such that
e=/f, +/fo+ -+ +f, is asum of pairwise orthogonal idem-
potents f;. Thenn =1orn=2.

Proof: Consider the elementa = f; + 2f, + * - + nf,, of
&/ . Since it is quadratic, there exist scalars x and y such that

a®+xa+ye=0. (25)
Equivalently,
(T+x+y]fi+[4+2x+yl1 i+

+ (n* + nx + y)f, =0. (26)

But this system of equations has a solution if and only if
n=1lorn=2.

Corollary 3: Let the quadratic algebra .7 be the algebra
direct sum

A=A A0 DA, 27)

Thenn=1lorn=2.

Proof: Since . has an identity, each </, has an identity
fi, i=1.2,....n."Then the f;’s form a set of pairwise orthogo-
nal idempotents.

Each quadratic algebra is power associative, in the sense
that any subalgebra generated by a single element is associ-
ative. Any finite-dimensional power-associative algebra %
has a unique maximal nilideal .#”, and the quotient algebra
% /¥ has maximal nilideal 0. 4" is called the nilradical of
A, and A is called semisimple in case 4" = 0.

The most general variety of quadratic algebras we will
study are the (noncommutative) Jordan algebras. An alge-
bra # is a Jordan algebra if it is flexible, that is,

(xy) —x(yx) =0, (28)
and it satisfies the Jordan identity
) x? — x(px?) =0, (29)

for every pair x and y in _# . The variety of Jordan algebras
includes both the associative and alternative algebras.

Lemma 4: A quadratic algebra .« is Jordan ifand only if
it is flexible.

Proof: From

x2=2T(x)x — N(x)e, (30)
we see that

(xp)x* = 2T(x) (xy)x — N(x)xy, (31)
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x(px?) =2T(x)x(yx) — N(x)xyp, (32)
will be Jordan if
T(x)(xy)x = T(x)x(yx). (33)

If o7 is flexible, these will be equal.

A quadratic algebra .o/ will be flexible if and only if the
trace T(x) is associative; thatis, T ((xy)z) = T {x(yz))for all
X, y,and zin &. If <7 is flexible, then the mapping

x-¥=2T(x)e — x, (34)
is an involution in .7, and satisfies

xX+y=X+7, (35)

X =x, (36)

Xy = yx, (37
for all x, y in &. Equation (20) implies

xX =Xxx = N(x), (38)

x+x¥=2T(x)e (39)

(see Braun and Koecher,?' p. 216). We know that the over-

bar is the unique involution in 7 satisfying (38) and (39).

We will call the overbar standard involution in </ . The map

(33) may define an involution, even if ./ is not flexible.
Define a bilinear form T: &/ X & — F by

T(x,p) = T(xyp). (40)

Then T'is an associative bilinear form on o7. The next result
relates the bilinear form T and the metric G.
Lemma 5: If <7 is a flexible quadratic algebra, then

T(x.p) = T(xy) = N(%,p). (41)

If x,yeV, then T(x,p) = — g(x,y). Here T(x,y) is nonde-
generate if and only if G is.
Proof: Let x,ye.of . The equations

(x+y)—2T(x+p)[x+y]l + N(x +y)e=0, (42a)
x2—2T(x)x + N(x)e=0, (42b)
Y =2T(»p)y+ N(p)e=0, (42¢)
imply

xy+yx = 2[T(x)y + T(»)x] +2N(x,y) =0, (43)

Xy —yx + 2N(x,y) =0, (45)
T(xy) = N(xp). (46)

If u,veV, then T(uv) = — g(u,v) = g(u,v).

The even easier proof is omitted.

Lemma 6: Let o/ be a flexible quadratic algebra. Then

(a) The radical ./ of & is the set
N = {neot |T(n,x) =0forall x in & }.

(b) The quotient algebra & = o7/ is the algebra di-
rect sum of (at most two) simple algebras.

(¢) Themap T: & X .o —F defined by

T(a+Ab+4)=T(ab), 47)
is an associative trace form on .« that is nondegenerate. This
will be called the induced form on =7

The “algebra of color” discussed in Refs. 8,9, 12, and 13
is a flexible quadratic algebra that is not commutative.

This is about as far as we can push the theory of flexible
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quadratic algebras without some additional assumptions. It
would be nice to have a quadratic algebra analog of the Wed-
derburn principal theorem for associate algebras.

Theorem 7: Let &/ be a finite-dimensional associative F
algebra. Then & has a vector space decomposition,

o =F + N,

where C is a subalgebra of . and is isomorphic to the quo-
tient algebra o7 /4", which is the nilideal of 7.

Proof: See p. 47 of Ref. 24.

There is no principal theorem for the variety of Jordan
algebras. Such theorems do exist for the variety of alterna-
tive algebras and the variety of commutative Jordan alge-
bras. The next two actions of this paper will examine these
two cases. We end this section with a remark on the Lie
structure of flexible quadratic algebras.

In general, the flexible quadratic algebras, under the so-
called Lie product [ , ],

[a,b] = ab — ba, (49)

do not form Lie algebras. To see this, note that the octonion
algebra is a flexible quadratic algebra that does not form a
Lie algebra under the product (49).%°

1V. COMMUTATIVE QUADRATIC ALGEBRAS

Commutative quadratic algebras are commutative Jor-
dan algebras. The finite-dimensional simple algebras in this
variety are classified as type A, B, C, D, or E (Ref. 22, p.
101). Those of type D are associated with the Jordan algebra
of a symmetric bilinear form f.

Example 2: Let V be a finite-dimensional vector space
over the field F with symmetric bilinear form f. Construct
the vector space

F=Fe+V, (50)
and define a product in # by
(ae +x)(Be +y) = (@B + flx.y))e + Bx + ap, (51)

foralla,Bin Fand x, yin V. Clearly ,# with this product is a
commutative Jordan algebra.
The nilradical of # will be the set

N = {ne #|f(v,n) =0 forall vin J}. (52)

The quotient algebra # /.4 is isomorphic to the Jordan al-
gebra of the form induced by fin o = v/.4".

The algebra # will be simple, that is, # will have no
ideal # _#,0 if the dimension of ¥ over Fis greater than one
and f(x,p) is nondegenerate. Here ¢ contains an idempo-
tent element £ #0, e, if and only if there exists ve ¥ such that
Slv,w) =1 (see Ref. 26, p. 14).

We return to the more general case and assume, only for
discussion of properties of these algebras, that _# is commu-
tative. Then we have the following theorem.

Theorem 8: Let . be a commutative quadratic algebra.
Then

A =C N, (53)

where .4 is the nilradical of =7, and % is one of the follow-
ing: (a) F, (b) Fe F, (c¢) the Jordan algebra of the set of
symmetric elements of the ring of 2 X2 matrices with an
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(48)

involution over F or the quaternions, or (d) the Jordan alge-
bra of nondegenerate symmetric bilinear form.

Proof: From Ref. 27, there is a Wedderburn principal
theorem for commutative Jordan algebras that gives us a
decomposition as in (53); however, we know only that the
algebra is the direct sum of simples. Lemma 3 of Ref. 23
applies, and ¥ is simple or isomorphic to the direct sum
F o F. The above classification scheme for simple Jordan al-
gebras is based on the maximal number (degree) of pairwise
orthogonal idempotents in the respective algebras, and in
our case, the algebras must have at most two idempotents.
The result now follows upon examining the degree two alge-
bras in each case.

V. THE ALTERNATIVE CASE

In this section, %/ is an alternative algebra that has been
constructed as in Sec. II.

Theorem 9: The alternative algebra .« is a division alge-
bra if and only if g(v,v) <O for all nonzero v in V, and the
dimension of ¥ over Fis one, three, or seven.

Proof: We use the fact that if every nonzero element of
an alternative algebra with identity has an inverse, then that
algebra is a division algebra (Ref. 22, p. 38). Let a be in F
and vin V. Then by (38),

(ae +v)[al + v+ 2a(ae + v)]

= [ae + v+ 2a(ae + v) ] (ae + v)

= —n(de+ V)

= [ ___a2 - (va)] =Oy
ifand only if & = 0, v = 0.

The alternative division algebras over R are R, ¥, the
real quaternions, and the octonions.

Theorem 10: If the dimension of ¥ over Fis at least two,
and g(v,v) = 0 only if v = O, then .« is simple.

Proof: Suppose 0el< ¢ is an ideal. Let ae + vel, acF,
veV, and w+v an element of V. Then

aw + wvel,

aw + vwel,

2aw + wv + vwel, wv + vwekFf,

v+ ael,
and thus

y=2a*w + (wv + vw)vel.

Thus 0#£xelU ¥V and x%.
We can do no better than this. The bound of the dimen-

sion of .o/ over R must be at least 2, as the following example
shows.

Example 3: Let V = F, &/ = Fe® V. Multiplication for
& is given by v* = 1 for veF, and e the identity. Then e + v
generates an ideal in 7,

N(e+v)=e—e=0,

(e +v)(ae +Bv) = (ae + B) (e +v).

Theorem 11: Let . be an alternative algebra. Then .o/
has a vector space decomposition

oA =C + N, (54)
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where .#" is the nilradical of ./ and ¥ is one of the follow-
ing: (1) F, (ii) Fe F, (iit) C, (iv) F,, the ring of 2 X 2 matri-
ces over F, (v) the quaterion division ring, (vi) the octon-
ions, or (vii) the split octonions.

Proof: Applying the Wedderburn principal theorem for
alternative rings, we get a decomposition as in (51) that tells
us that the algebra ¥ is isomorphic to the quotient algebra,
which is a direct sum of simple alternative algebras. The
simple alternative algebras are either simple associative or an
octonion algebra. Since the quotient algebra can have at
most two pairwise orthogonal idempotents, it must be one of
the possibilities listed in the theorem.

Corollary 12: If o/ is alternative and the bilinear form is
nondegenerate, then the dimension of .&7 over Fis 1, 2, 4, or
8. In this case, it is possible to choose a basis for =7 in which
the norm form N(x) is given by one of the following:

(i) N(x) = x?,

(i) N(x) = x} — ax3,

(i) N(x) =x} —axi —Bx} —aB3,
(iV)N(x) = x1 — ax; — fx; + afxi — yx3

+ ayxg + Byx; — aByx,,
where a, £, yeF, afyF#v.
Proof: See p. 33 of Ref. 22.
Corollary 13: If o is alternative, and the dimension of
& over Fis not 1, 2, 4, or §, then the norm is degenerate.

VI. CONCLUSION

Thus we see that if we require any respectable behavior
of the algebra of arbitrary dimension, we force the metric to
be degenerate. In the alternative case, if the metric is not
identically zero, the algebra must contain one of the algebras
listed in Theorem 11, and a nilalgebra. The commutative
case is equally limited as to possible algebras.
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A supermanifold version of the Newlander—Nirenberg theorem is proven. The classical
Newlander—Nirenberg theorem states the conditions under which an almost complex structure
on a differentiable manifold gives rise to a complex structure. A definition is given here of an
almost complex structure on a differentiable supermanifold along with the conditions under
which this gives rise to a complex structure on the supermanifold.

I. INTRODUCTION

Let us recall the definitions of superalgebras and super-
manifolds. A superalgebra or Z,-graded commutative alge-
bra is an algebra in which every element can be written as a
sum of an even element and an odd element. Even elements
commute with all elements in the algebra and odd elements
anticommute with odd elements. A differentiable superman-
ifold is a pair (X,4), where X is a differentiable manifold and
A is a sheaf on X of Z,-graded commutative algebras over R
which is locally isomorphic to thesheaf A%, (C =) ®™. Let N
be the sheaf of nilpotents of 4. We also require that globally
A/N=C>.ThenN /N *isalocally freesheafof C * modules.

The coordinate neighborhoods for a differentiable su-
permanifold (X,4) are by definition open sets U that are
coordinate neighborhoods of X and are such that
A|y=A%. (C=)°"|,. Let s',5%,...,s™ be linearly indepen-
dent sections of {(C *(U))®™. Then sections of 4(U) have
the form

f= Zflsl’

where f; =f;(x',x%,...,x,)eC* (U) and s'=s"s - s",
I= (i,<i<* +<i,). The x',..,x" and s',...,s™ are referred
to as even and odd coordinates, respectively. The Z, grading
on A is represented locally by the following: fis even if

f= > 5
|1]even
and fis odd if
f= 3 fist
171 odd

Note that a change of coordinates is required to preserve the
Z, grading.

A complex supermanifold is a pair (X,4), where Xis a
complex manifold and A is a sheaf of Z,-graded algebras
over C that is locally isomorphic to A% 7 ®*™. We also re-
quire that globally 4 /N= ¢ and that N /N2 is alocally free
sheaf of & modules. Locally, sections of 4 on a coordinate
neighborhood U will have the form

g=> g’
I

where g, = g,(z',2,...,2" )€ (U) and 1',...,n™ are linearly
independent sections of & ®™. The z',...,z" and 7',...,7™ are
referred to, respectively, as the even and odd complex co-
ordinates.
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li. ALMOST COMPLEX STRUCTURES ON
SUPERMANIFOLDS

We wish to prove an analog of the Newlander—Niren-
berg theorem for supermanifolds. The classical Newlander—
Nirenberg theorem' states the conditions under which an
almost complex structure on a manifold gives rise to a com-
plex structure. We give a definition of an almost complex
structure on a differentiable supermanifold and conditions
under which this gives rise to a complex structure. The proof
applies the classical Newlander—Nirenberg theorem on the
underlying manifold. We then build up the result onto the
odd coordinates using a well-known lemma on the holomor-
phic structure of vector bundles and finally a finite iterative
procedure.

Let (X,4) be a differentiable supermanifold of dimen-
sion (2n,2m). Define an almost complex structure on (X,4)
as an even automorphism

J:Der(A4,4) —Der(A4,4)

of sheaves of 4 modules such that J2= —id. Here
Der(A,A4) is the sheaf of graded derivations of 4 into 4. Let
x!,...,x"s',....s" be local coordinates for (X,4) on UCX. Let

0, = i _ ,'_]_‘9_
ax® Ix”

and
0 -9yl
s’ Js’

Then ®,, e, P o d ; 1s a local basis for
Der{4(U), A(U))® C = Der(4 (U), A (1)),
where A (U) = A(U) ® C. Consider
Q¢ (U,4) = Hom,, (Der(AC(U),AC(U)),AC(({))

and abasis 8%, 60, ¢/, ¢’ dualto©_, 6, D, <T>j. Sections of
Q¢ (U,A) are referred to as super one-forms. One also has
super p-forms QZ(U,A) and covariant differentiation
d: Q2. (U,A) - 02" (U,A4), We refer the reader to Ref. 2.
Henceforth Q¢ (U,4) is abbreviated as Q'

An almost complex structure J on a differentiable su-
permanifold (X,4) is said to be integrable if one can find
local complex superfunctions z°=x*+4iy* and 7’
= s/ + it/such that x%, y%, s/ + it /such that x%, y°, s/, t/isa
local coordinate system and such that

o(L)-2 o(2)--Z
ax° ay* ay* Ix“
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J(i) -9 J(i) - _9
as’ ot’ ot/ Js’

lil. ANALOG OF THE NEWLANDER-NIRENBERG
THEOREM FOR SUPERMANIFOLDS

We now present the super Newlander-Nirenberg
theorem. An almost complex structure J on a differentiable
supermanifold (X,4) is integrable if and only if
d9° = 0mod 8%, ¢* and d¢’ = 0 mod 6%, ¢*.

As one direction is trivial, we need only show thistobe a
sufficient condition. Notice that J gives rise to a J * on super
one-forms and that § ¢, ¢/ span the + i eigenspace of J *. We
seek complex superfunctions 2%, 57/ such that dz* and dy/ are
in the span of 87 and ¢* and such that dz%, dz°, dy’, d%’span
Q.

Consider the one-forms red(8”)e{lc (U) where red:
QL(U,4) -QL(U) is induced by the quotient map red:
Ac(U)—-A (U)/Ne=C=(U). (red is for “reduced.”)
They satisfy the conditions of the classical Newlander-Nir-
enberg theorem. (See Ref. 3.) Thus we obtain local holo-
morphic coordinates z* on U. One can find linear combina-
tions of the 8 %, = 1,...,;7 8 “ which form a new basis for the

+ i eigenspace of J * and are such that

8% = dz* mod NQ',
where N is the nilpotent of 4 (U). We also have

¢’ =ds’' + i3 ds* f} mod NQ', fieC~oC.

k
Let
7' =s"+i3 5.
3
Then

¢’ = dn’ mod NQ".

We proceed to refine our z* and 7/, considering higher and
higher terms of nilpotency and taking linear combinations in
the span of @ and 7/ when necessary. We first refine our
choice of @ “ and ¢/ with respect to the coefficients of dz* and
dz’ by the following inductive procedure.

Fix a positive integer p. Suppose that

0% =dz"+ 3 dFP Ag + ;dn"Bz + %df‘?cg
B
+§k:d1‘7"D§f, (1
07 =dn’'+ Y df E +;dn"Ff;< —k;dEﬂGf,'3
B
+ 3 it Hi, )
is a basis for the + i eigenspace of J * such that 4 5, B¢, E%,

FjeN?and C}, D¢, G/;, H).eN. Then there is a new basis
for the + i eigenspace of J * given by

eanzea:_ eﬁlAav_ k;Ba
PUCTEY )
=dz* + Y dPAF + Y dy*BY
B k

+5SdZC¥Y + N dp* DY,
z/;, B ; /A (3)
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07" =6%"—F 07E, — S¢F,
A 3

—dn/+ S dPEL+ S dn* F
B k

+>dZ¥ Gy + Y dy* HY,
B k
(4)
where 45, B, E, F{eN?*'and C}’, D', G%, H/€N.
Since N+ ! = 0 one obtains, after applying the procedure a

finite number of times, a basis for the -+ 7 eigenspace of J * in
the form

0" =d + 3 dZ Cg" + Y di* D", (5)
B k

07" =dp’+ Y dP Gy + 3 di* HY, (6)
B k

for some C3", D", G5, H’eN.
We now work with " and ¢/ as a basis for our + i
eigenspace of J * and hence drop the use of the double primes.
The real and imaginary parts of z* and %’ form a local
real coordinate system for U; in particular,

J —, 0 < _. d
d=%dz — dz? — + N dy’ dn/ —.
za: z 8za+§a: az¢ z/: 77+; 1737_7’

Now if
0°=dz"+ Y dp/n' b5 + Y dij’ 7'c; mod N?Q!
i P

then the condition

d0“ = 0mod 6°,4*
requires that

dn’ 7'c; = d(77') 5.

(Here we have used dz%, d7*, 7%, ¢* as generators for Q*.) If
we set

0% =dz -y 77¢'b  mod N2Q'.
Thus set ”

0“’=G“+Zv‘7’¢’bﬁ=d2"’ mod N2Q'". N
Now !

¢j=dnj+;d2ﬂ17"f§k +;d§57]kg‘bk mod N2Q'.

The condition d¢’ = 0 mod 87,¢* requires gy, = Oforall 5,
Js k and thus

¢’ =dn’+ Y d7Z° 9*fly mod N?Q'.
Bk

We are now ready to proceed with the next step in our
proof. Namely, let us show that N /N ?is a sheaf of sections of
a holomorphic vector bundle. We first prove a lemma.

Lemma 1: The f7; above satisfy the equation
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af, ar; ) )
HE; ;_Z(f{ﬂfék _f‘,g{fclzk):O' (8)

Proof> We use the condition d¢’ = 0 mod 6%, ¢*. Write
¢f'=d77f+2d2’317"j”;3k +2d~7]’g’) mod N3,
Tk 7

where g/eN 2. Remembering that d 7%, d%', 87, ¢* can be
used as generators of {1*, consider the terms of d¢/ involving
d z* A d Z°. The sum of these terms must be zero, and in par-
ticular must be zero mod N >Q'. Now, in the expression

dp' = dP N i + 3 dP 7 dff
ey ¥
+ Y d%' g/ mod N2Q',
i

only the first two summations shall have terms with
d z* A d Z° when they are written in terms of the generators
d 7, dij', 67, ¢'. Recall that dz° = 6# mod N 'Q! and

dn*=¢" -
Making this replacement one obtains
ab'=5 a2\ (¢ =3 dz s )
A i af;
B Y i

S dz%q' f§, mod N2Q'.
a,l

+dz"—
aEa

+zdz”/\(29“

+ 3 d7' Adg{ mod N?Q,
[

where we have used 6% =dz*n* mod N?Q'. Since
d¢’ = 0 mod 6 “¢* we have
S dZNdzq ( Vo _ Xfufe )
Ba.k
Since d Z°Ad z* = — d Z* A d Z° one obtains
af‘;&‘k af{zk - I j !
_ Yk _ L —flfL)=0. Q.ED.
aza JZB Z (fBLf k lfﬂk Q

Let us proceed to show that (X,4) has an underlying holo-
morphic vector bundle.

Lemma 2: Given peX, there is a neighborhood of p, U ",
and functions 4 { on U ” such that

ohf
—Efajhk

for each J» k, a and such that the matrix A ," has full rank
everywhere on U "”. (See also Ref. 4.)

Proof: Let z%, w* be classical complex coordinates on
U X C™, where Uis chosen as a coordinate neighborhood of
p on which our f, are defined. Consider the vector fields

d —
-, T _ fk {
dw’ z
Notice that Re(Z,,), Im(Za ), Re(W)), Im( W,) form a ba-
sis for 7(U X C™) at each point in U.
Define an almost complex structure J on U X C™ by
J(ReZ,)= —Im(Z,), J(ImZ,)=ReZ,,
J(Re W)= —ImW,, J(ImW,)=ReW,.

W=

1041 J. Math. Phys., Vol. 30, No. 5, May 1989

The condition that J is integrable is that [W,,W,],
[WiiZ.]1s [Z.,Z3] are in the span of W, Z,. We have
[Wi:W;] =[W;,Z,] =0. When we calculate [Z,,Z;]
making use of Eq. (8) and the fact that f7,, is independent of
@, we obtain [Z,,Z;z] = 0. By the classical Newlander—
Nirenberg theorem, there are holomorphic coordinates v9,
g=1,..,.n+m on some neighborhood of (p,0),
UXVCUXC™. We can form a new holomorphic coordi-
nate system out of z*,...,z" and a choice of m of the v”’s which
we may take to be v',...,0™. We have W, (v?) =0,i.e., vcan
be written as a power series in w of the form

Vi=h%z2) + 3 hiGzHw + o{(w)?).
7

From 2, (v?) = 0 we have

Z,(h) = Z,(z h;lmf) =0,
J

which implies that
oht
afa - zf aj

In order for dz® and dv’ to be linearly independent at (p,0),
the matrix /4 7 must be nonsingular in a neighborhood of

2 Q.E.D.
Return to our supermanifold to see that

zh":ﬁf—Zh dn’ + 3 h¥dz® fln' mod N2Q!
Sal

k

. h
=S hldy/+ Y dz7 —
;1 7 ; 3

7' mod N?Q!

k

) oh
=Y d(hjn’) -y eo- L 7' mod N2Q".
K a.l az"
Thus set
. ohk
=S htgi+ T g L
; n® ; 2 Ui
and
=Y hjn’
7
We then have

¢*" = dy* mod N2Q'.
Also rewrite our previous Eq. (7): 8% = dz*’ mod N2Q'.
We take z*',7* as local coordinates on our supermanifold
(X,4) and hence write them without the primes.

We now show that N /N ? is a sheaf of sections of a holo-
morphic vector bundle. Consider a change of odd coordi-

nates on the intersection of two coordinate neighborhoods,
Uunu,

=3 bin‘+ 3 i7" mod N°.
k k

Since d7j’ = ¢/ mod N 2Q', where ¢/isin the + i eigenspace
of J * and thus in the span of ¢" and 9%, we must have

+ S —_ = 0 mod NQ.
This produces 6’b’k/élz7.‘z = 0, a=1,.,nand ¢, =0.
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Thus 7/ = 2, b/ 7% where b’, is a matrix of holomor-
phic functions, and we conclude that N /N ? is a sheaf of sec-
tions of a holomorphic vector bundle.

Now consider terms of higher nilpotency.

Lemma 3: Fix I>2. Assume there are one-forms 6 2, ¢/
in the + i eigenspace of J *, and supercoordinate functions
2%, 7/ such that

0* =dz"mod N'Q',

¢’/ =dn’ mod N'Q".
Then there are one-forms 8 **, ¢/ in the + ieigenspace of J *
and supercoordinate functions z*’,77”" such that

0% =dz* mod N' +1Q!,

¢ =dn’’ mod N' +'Q".

Proof: Consider the case in which / is even. The case in
which / is odd is exactly similar with only minor changes.

Make appropriate changes in 8%, ¢/ similar to those made
above in Egs. (1)-(6) so that

6°=dz*+ Y dPEG+ Y dij* F§
B k
and
¢'=dy’+ Y dZ G4+ Y di* HY,,
B 3

where E§, F§, G%, H,eN".
Expand 0 ¢, ¢’ in local coordinates to the next order of
nilpotency,

0 =dz* + aZ?9'b5, + dz? 3'c,

Bl =1 Bl =1

+ Y dFfn'pdg,, mod N'HIQ,
Bl =1
z d7—7k771fjl'<,1

k(TT=1

¢/ =dn’ + 2 dn* n'e,,
k|| =1

+ > dn* n'5’g).,, mod N'+ Q1.
K ¥T) =1
Now df* = 0 mod 87, ¢* and d¢’ = 0 mod 87, ¢* requires
cgr=d5;, =, =8 =0foralla, B, I,J,j, k. Thus

6 =dz*+ Y dZ9'bj, mod N'*'Q!
BT =1
and

¢'=dp’+ Y difnle,.
k|IT=1

The lowest order terms in 7 of d6 * containing dz° A dz* are

a

b
dZ Ndz" g’ —LL, || =1.
; T e

1042 J. Math. Phys., Vol. 30, No. 5, May 1989

This sum must be zero for each I and each a since
df* =0mod 6%, ¢’. This gives local d closed one-forms
3, dz°b§,. By the Dolbeault lemma, there are complex
functions % ¢ such that

Ohy=Y3 Bd by,

Letz* =z + 2 _,h 7' and

oh¢
9ar=6a+ 65‘ I 7
/&1%:1 98 g
— Z ( _ l)fl,k ¢kh (Il,kﬂl’

KI=1—1

where €, , is 0 or 1 depending only on 7 and k. Then
6 =dz* mod N'*'QL

Let 7 =7’ + 2, ,5*n'e, , and
¢jl — ¢j + Z

Lk IT=1-1

(= D™ n'el s,
Then

¢/ =dn? mod N'*1Q.

Since N7 * ! = 0, a finite number of applications of this
lemma produces supercoordinate functions z* and 7/ such
that dz* and d7’ are a basis for the + / eigenspace of the
almost complex structure, J *. Q.E.D.

The above proof may be modified to give a proof of the
Frobenius theorem for supermanifolds. As in the classical
case, the two theorems, Frobenius and Newlander—Niren-
berg, are related. We refer the reader to Ref. 5 for the Fro-
benius theorem on supermanifolds.

Note added in proof: Dirmitri Leites has pointed out that

a different proof of the above theorem has been given by A.
Yu. Weintrob and is to appear in an English translation.
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A semisystematic method of finding solutions that satisfy the zero Nijenhuis tensor condition
with dual symplectic structure is developed. In this manner, a few solutions, including that of
the Toda lattice, have been found. It is also shown that the general solution for the linear
problem is intimately connected with nontriviality of the second cohomology group of solvable
Lie algebras. Moreover, the case of the quadratic problem requires studies of an algebra

involving the triple-linear product system.

I. INTRODUCTION

In a previous paper’ we have proved that any dual sym-
plectic manifold with zero Nijenhuis tensor possesses many
interesting properties. Especially, we can construct an infi-
nite number of conserved quantities in involution which sat-
isfy the hierarchy equation. Moreover, the dual symplectic
manifold admits an infinite series of Poisson brackets and
Lagrangians that nevertheless yield the same equation of
motion. However, it is in practice a rather difficult task to
find physically realistic solutions satisfying the conditions,
although both Korteweg—deVries (KdV) and Toda lattices
are known?? to be such examples. In this paper, we restrict
ourselves to consideration only of a finite system for the sake
of definiteness and present a semisystematic method of find-
ing possible solutions. In this way, we find a few solutions,
including the case of the Toda lattice.

First, we will show in Sec. II that the simplest linear
problem is reduced to a study of the second cohomology
group of solvable Lie algebras. In contrast, the case of the
general quadratic problem will lead to a complicated triple-
product system, as we will explain in Sec. V. However, we
will concentrate most of our effort in this paper to the simple
practical study of finding physically reasonable integrable
models, as shown in Secs. III and IV. Some of these solu-
tions, including the Toda lattice, are found to possess an
extra affine structure with zero Rieman curvature, but non-
Zero torsion tensors.

Before going into the details of these facts, we will brief-
ly sketch some results of Ref. 1 in order to be as self-con-
tained as possible and establish notations. Let x*
(¢ = 1,2...,D) with D = 2N be a local coordinate system in
the 2N-dimensional symplectic manifold M, with two sym-
plectic forms given by

f=1/f (x)dx" Ndx”, (1.1)
F=1F,, (x)dx* \dx", (1.2)
so that we have

Oifow + 3,100 +0,f,, =0, (L.3)
0,F,, +3,F, +3,F,, =0. (1.4)

We write inverses of f,,, and F,, as f*"and F*", respectively,
so that

Y, =&, (1.5)
FHF,, = 8. (1.6)
1043 J. Math. Phys. 30 (5), May 1989
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In this paper, the repeated lower case Greek indices are un-
derstood to imply automatical summations on the 2N values
1,2,...,2N. We now introduce the mixed tensor S, by

Sy =F . " (1.7)
and define the Nijenhuis tensor by
Nﬁ,, = - Nﬁ#

=87 4,82 -SffaaSi -5 (4,857 —-4,5%).

(1.8)

Next, asin Ref. 1, we construct the nth power antisymmetric
tensor (F"),,, inductively by

(F"“)#V:wa"”(F")BV, (1.9)
with

1]

(F%) o =L (1.10)
for n>0. For negative n, we set

(F™ Y =faFfs, (1.11)
and similarly define (F ") ,,. Then, we find

(8™ = (F")  f*=fa(F "™, (1.12)
as in Ref. 1.

Now, we set

K,=72n)TrS"= (1/2n)(§™)4 (n#0), (1.13a)
K,=1log(detS) (n=0). (1.13b)
If the Nijenhuis tensor N fw is identically zero, we have

proved the following results in Ref. 1. First, K, satisfies the
hierarchy equation

S.9,K, =9, K,

(1.14)

for any integer n. Second, the antisymmetric tensor (F"),,,
also satisfies the symplectic condition
A (F"),, +3,(F") ; +3,(F"),, =0, (1.15)

again for arbitrary integer values of n. As a result of Eq.
(1.15), we can introduce an infinite series of Poisson brack-
ets by

{hgt,=(F"*3,hd.g (1.16)

for any two functions 2 = A(x) and g = g(x): Especially,
the K, are in involution with respect to any one of these
brackets, i.e., we have

{K..K.},=0 (1.17)

for any three integers n, m, and p. Moreover, all X, can be
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regarded as conserved quantities of the infinite series of La-
grangians

(ny _ g (n) dx*
LY=6, (x);t———K,,”(x) (n=0,4+1,+2,.)
? (1.18)
for a fixed value of p with the respective time variable z,,
where 6 [ (x) is defined by

(Fn)‘w =c9,46§,"’ —avo,(:’) (119)
in view of Eq. (1.15). As a result of the hierarchy equation
(1.14), all Lagrangians L{” (n =0, + 1, 4+ 2,...) lead to
the same single equation of motion
(1.20)

.
& _ oK,
dr, S F

irrespective of the values of n. Therefore, the infinite series of
Lagrangians L " (n=0,+1,+2,...) are equivalent to
each other. Finally, we have

E‘;—K,, ={K,.K,},=0,

P

(1.21)

so that the K, are indeed the conserved quantities of the
Hamilton system. Therefore, if we can find & algebraically
independent terms among the K, then the system is integra-
ble in view of the Liouville theorem. As we noted elsewhere,?
the Toda lattice satisfies all of these criteria.

The remaining problem that is the major concern of the
present paper is a practical one: how we proceed to discover
models satisfying the zero Nijenhuis tensor condition. In
Ref. 1, we have also shown that N}, = Ois equivalent to the
validity of

0, (F-F),, +3,(FF),, +9,(F-F),, =0, (1.22)
where we have set
(F-F),, =F),, =F,,f*%F,,, (1.23)

provided that Eqgs. (1.3) and (1.4) hold. Especially, the gen-
eral validity of Eq. (1.15) is remarkably a consequence of its
two special cases n = 1 and n = 2, provided that the two-
form fis symplectic. Now, by the Darboux theorem,* there
exists a local coordinate frame, called the canonical coordi-
nate system, in which all ,,, are constants. More specifically,
we can set

g =x, (1.24a)
for j = 1,2,...,N, with the canonical form of
N
f= z dp; A dg;. (1.25)
i=1
1

Especially, we have

S =F5 =0, (1.26a)

fr=—Fi=—b; (1.26b)
as well as

fF=pk=o0, (1.27a)

fF= — k=8, (1.27b)
where for simplicity we have set

k=N+k (1.28)

for any lower case Latin index k which will assume the ¥
values 1,2,...,N. Hereafter in this paper, we will work only in
the canonical coordinate system unless stated otherwise.
Then, the problem is reduced to finding solutions only of
Egs. (1.4) and (1.22) since Eq. (1.3) is now trivially satis-
fied. For later convenience, we set

A/lyv(G) = aAG,“, +(9MGV;~ + avGA’u (1.29)

for any antisymmetric tensor G,,, = — G,,,. Then, A, ,, (G)
is totally antisymmetric in A, i, and v. In the following sec-
tions, we will develop a semisystematic way of finding solu-
tions of the following desired equations:

A, (F) =048, (FF)=0 (1.30)

in general, we need not worry about the existence of F#* for
solving them. If detF,, =0, then we may use
F,, =F,, + Cf,, for any constant C instead of F,, since
F,, evidently also satisfies Eq. (1.30). We may then take the
limit C—0 at the end of the calculation if the limit exists.

ll. LINEAR CASE

In this section, we will study the simplest solution for
F, =F, (x) as linear functions of x* in the canonical
frame. However, for a while, we assume only that f;W are

constants.

We set

Fyv =h,uv +CZVfaB'xB (2~1)
for some constants 4, and C,, satisfying

h,, = —h,, (2.2)

Cl = —-C3,. (2.3)

Then, the condition 4 ., (F) = Ois clearly equivalent to the
validity of
szfal + Czllfa,u + Cg,u.fav =0. (24)

Next, we calculate

A/lpv(F'F) = {(Cga_fﬁll + Cg/Iva)h;tﬁ + (Cga.fB‘u + Cgﬂ.f@/l)hvﬁ
+ (C,Za.fev + Cg1f0y)h/lﬁ}faﬁ + {(C,Zafezl + chz/{.fe,u)crv
+ (Cga.fey + Cprev)Cgl + (Cga.ffhr + Cgufﬂi)c£,u }faﬁ yrxT'
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When we utilize Eq. (2.4), the above relation can be simpli-
fied to become

A, (FF)= C’j}hﬂﬁ + nyh,,,, + C,’f,,hw
—{C4,Ch, +C8.Cly +CECL X"
Therefore, the condition A, ,, (F*F) = 0 requires

C'f,lkpﬁ + Cfﬂhvg + Cﬁvhm =0 (2.5)
and
Cf{# 5+ Cfva,’g,l + C‘v’ACg” =0. (2.6)

Especially, we recognize Eq. (2.6) as the Jacobi identity of a
2N-dimensional Lie algebra L. When we introduce 2NV tan-
gent vectors X, in M by

X, =x°C%, 3, 2.7)
then Eq. (2.6) is equivalently rewritten as
[X.,X,] =waX,1. (2.8)

Equations (2.4) and (2.5) can now be analyzed as follows:
Since both equations have exactly the same form, we will
consider Eq. (2.4). We introduce a bilinear antisymmetric
functional {X,Y ) in the tangent space T, by

(X,.X,) =1, (2.9)

Since f,,, is nondegenerate, (X,Y) is also nondegenerate.
Then, Eq. (2.4) is rewritten to be
([X..X, 1. X0 + ([X..X;].X,) + ([X,,X,].X,) =0.
(2.10)
Equation (2.10) is precisely the two-cocycle condition® of L
in a trivial representation space ¥, of the Lie algebra L.
Therefore, both £, and 4,,, are components of two cocycles
of L. First, we will prove that L cannot be semisimple. Sup-
pose contrarily that L is semisimple. Then, the second coho-
mology group H>(L,V) is identically zero>® for any finite-
dimensional representation space ¥V of L. Therefore, any
two-cocycle is exact, so that there exists a one-cochain ¢,
satisfying

for = (X,,X,) = (68)) (X,,X,)

=¢,([X,.X,])=CL.é/(X). (2.11)

Since L is assumed to be semisimple, the Killing form
g, = Tr(ad X, ad X, ) is nondegenerate with its inverse g**.
Moreover,

f;iwl = Cnga/l
is totally antisymmetric in the three indices y, v, and A.
Hence, if we set

£1=g"¢,(X.),

then Eq. (2.11) is rewritten as

f/:w :f,;tvié‘ A,

so that we have

f‘;vé—v z.f;tw"té—vé—,1 = 0'
Multiplying f** to the above equation, we find £%=0,
which leads to ¢,(X,; ) = 0. However, Eq. (2.11) then im-
plies £, = 0, which is a contradiction. This proves that L
cannot be semisimple. Also, if H*(L,V,) = 0, we can replace
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Juv BY A, in Eq. (2.11). Then, we can effectively set 4, =0
in Eq. (2.1) by making a coordinate translation

x“—»x"‘ = x" + bH
for some constants b *. Therefore, nontriviality of 4, neces-
sitates the nonzero second cohomology group H*(L,V,,).

Moreover, let

L=L,+ L,
be the Levi decomposition of L into its semisimple part Lg
and radical L. Then, we know® that H 2(L,V,) is isomor-
phic to a subspace of H?(Lg,¥,) and that

([XI’Y]: Xz) = <Xl9[KX2])

for X,, X,eLz, and YeLg.

In conclusion, the Lie algebra L is such that the sym-
plectic functional £, ,. is its two-cocycle and H 2(L,V,) must
be nonzero in order to have nontrivial 4,,,. Especially, L
cannot be semisimple. Moreover, since 4, is a two-cocycle
of L, the central extension>® of the Lie algebra Lis also a Lie
algebra L defined by

[Y,,Y,]=CiLY, +h,1,
[Y,,1]=0.

(2.12a)
(2.12b)

Actually, Lis isomorphic to a finite sub-Lie algebra of a
general Poisson bracket algebra defined by [see Eq. (1.16)
forn= —1]

{hg}_ = (F "N 3,hd,g=
where we use

(F =) =f*Fopf™
and set

d*h = f** 3, h. (2.14)

For the present solution F,,,. given by Eq. (2.1), we calculate
especially

—F,, 3"h3d"g (2.13)

{x, x.} = —h,—Cix, (2.15)
when we set
X, =fo’1. (2.16)

Clearly, the Lie algebra specified by Eq. (2.15) with the
generators x,, and 1 is isomorphic to L given by Eq. (2.12)
since xy,l}_1 =0 as well. The possible relevance of Eq.
(2.15) for the KdV equation and Virassoro algebra will be
discussed elsewhere.

In this paper, we consider only cases of L as a solvable
Lie algebra without any semisimple part. Moreover, on the
physical ground, we assume that F,,, depends upon the mo-
mentum variables p;, but not upon the space coordinate g;.
Then, assuming hereafter the canonical coordinate frame,
we can readily find a special class of solutions of the form

[X;,X] =0, (2.17a)
[ XXz ] =8y8,X,, (2.17b)
[X5: Xz ] = §p X, — Ei Ko (2.17¢)

or equivalently,
le’i = - C%‘j =06,6,%, (2.18a)
Cizx =8, & — Su &ij» (2.18b)
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Ch=C)=Chr=Ck=0, (2.18¢)
where £; and £ are arbitrary constants. We can easily verify
th_e fact that Egs. (2.4) and (2.6) are automatically satisfied
by Eq. (2.18). The present Lie algebra L is solvable, but not
nilpotent. Also, X,X,,...,Xy generate an Abelian ideal of L.
Now, Eq. (2.5) reduces to

&hy =0, (2.19a)
gjkhjl - §kjhk1 = 5kl §kh1} - 51] fjhﬁu (2.19b)
é}kth + Suhig + §1jh1E = §kjhk7 + Euwhis + §jlhjz- (2.19¢)
Here, we may remark that no summations are implied for
repeated Latin indices, in contrast to the cases of repeated

Greek indices. In this paper, we will be content with the
following special solution of Eqs. (2.19):

hy =0, (2.20a)
hz = —hgy =1, 64, (2.20b)
hj; = — h;j, (2200)

where 77;, as well as /3, are arbitrary constants as long as #;;
satisfies the antisymmetry condition (2.20c). Note that this
allows nontrivial H*(L,V,).

Combining Egs. (2.1), (2.18), and (2.20), we have

Fr=—Sk= —S;-Z'=5,k(77,- —&p)), (2.21a)

F = _Sjl'( = M5z — &b + S (2.21b)

F,=Sf=0. (2.21¢)
Therefore, we calculate
1 N

Ki=—TeS= 3 (&p ), (2.22a)
j=1

1 , 1 & )
K2='4_TrS :7 z (&P — ;)" (2.22b)
i=1

We note that all K, are functions of only the p; and indepen-
dent of £, and /5. Especially, if we choose

then K, and K, represent the total momentum and total en-
ergy of a free N-body system in the language of the canonical
Hamiltonian formalism. This is the reason why we have cho-
sen F, , to be independent of the space coordinates g;. At any
rate, we may say that the present solution corresponds to a
free particle system.

As noted in Sec. I, once we find a solution of the prob-
lem, then F w = (F™),, is also a solution for any integer
value of n since in view of Eq. (1.15) it also satisfies

By (F)y=A,,, (FF) =0. (2.24)

Especially, if we choose » = 2, Eq. (2.24) will give us a solu-
tion quadratic in the momentum. However, the solution is
really not new since its conserved quantity K, =} Tr S is
precisely the same as 2K, = } Tr S? of the old theory. We
have also found a similar quadratic solution which is, how-
ever, not equivalent to the one discussed above: It is given by

Fr=1[n—&@)*16u, (2.25a)

Er =Mz — §up; + SPis (2.25b)

F, =0, (2.25¢)
1046 J. Math. Phys., Vol. 30, No. 5, May 1989

where #,,§;, £, and hz;( = — k5 ) are again arbitrary con-
stants. This solution will play a certain role in Sec. IV. Also,
a general study of the quadratic solution will be given in Sec.
V.

Concluding this section, we remark the following. We
noted that we can construct an infinite number of Poisson
brackets once a solution F,, of our problem is given. For
example, for the special solution (2.21) we can construct the
ordinary bracket with n = 0,

N(dh dg Oh dg
thedo= 3 (S1E - L),
° jgl aq/‘ apj apj aq/‘

as well as, for example, the following unconventional
bracket withn = — 1:

the}1= 3 (Ep—m)

(2.26)

(228 _oh )

i=1 aqj an 6pj a‘]j
N dh Jdg
+ (E4p; — EiPr — H7)— (2.27)
j,kz=l §jk ! ek 7 aqj dq,

from Eq. (2.12). We can directly verify the validity of the
Jacobi identity,

(e _r] +{nn] +lum g o
(2.28)

for three functions f; g, and 4 from Eq. (2.27); especiaily, we
can dispense with the assumption of the existence of F** for
its validity. This fact can also be shown by using
i’w = F,, + Cf,, for a small constant C and letting C—-0 if
necessary. We remark here that Eq. (2.27) gives the follow-
ing unconventional Poisson bracket relations:

oo} =0, (2.29a)
g} = (&p; — 1))84, (2.29b)
{9,903 -1 = Eapy — Euipi — Mz (2.29¢)

among the canonical variables p; and g;. Together with the
constant unit function 1, Egs. (2.29) define a Lie algebra
which is a central extension of the solvable Lie algebra L
defined by Eq. (2.17), as we have already remarked. If we
choose 7, = — 1, but §; = §;, = 43 =0, then we note that
Eq. (2.27) reduces to Eq. (2.26). Finally, to be complete, we
calculate the inverse F“¥ for the solution (2.21) to be given
by

Fl= —FN= —8,/(n; — &p)), (2.30a)

Fit= (B = &up;y + Eypi )/, — 52 (e — ExPi)s
(2.30b)
Fik=o. (2.30c)
We can readily verify
FPAFAVZ 5;.
Then, the Poisson bracket for n = 1 is given by
{hgt =F*3,hd.g
_ i hg — §ul; + ExPx oh Jg
M2 (g, — Ep) (. — Eupi) Fg; gy
N
B e 8 Y AP
=17 g;P; a‘Zj aP; apj aQ;
Susumu Qkubo 1046



Also, as proved in Ref. 1, the arbitrary linear combination
{h,g} = Co{h,g}o + C|{h,g}1 + C_ l{h,g}_, (2.32)

also defines a Lie algebra for the arbitrary constants C;, C,,
and C_,.

11l. TODA LATTICE AND MOMENTUM-DEPENDENT
TODA LATTICE

In Sec. II we have solved the problem for the linear case.
In order to obtain physically more relevant solutions, we
must add some interaction terms to the free energy solution.
This is in general a rather difficuit task, but we proceed as
follows. Let us suppose that we have found two solutions
H,, and G,, satisfying

A, (H) =A,,, (H-H) =0, (3.12)

A8, (G) =4,,(GG)=0 (3.1b)
then, their sum

F#v =H, +G,, (3.2)
will also satisfy

A (F) =4, (FF) =0, (3.3)

provided that we have the constraint
faB{Hua aﬁ Gv/l + Hva aﬁ Gl;t + H/la aﬁ G,uv
+G,, 0s3H,, +G,,0sH,, +G,, 0sH,}=0
(3.4)
when we utilize A, (H) = A,,,(G) =0.
Initially, it would appear that this strategy would not
offer any advantage at all. However, as we will see shortly, it

is indeed the case. First, we have already found the linear
solution in Sec. IT which we identify with H,,,, so that

F,uv = hyv + szfGTxT + G/.w'
Then, Eq. (3.4) is also satisfied if we have

fC;, 3G, +CL, 336G, +C5,8;G,,}=0
(3.6)

(3.5)

and
ng Gvﬁ + CﬁvG/lB + Cezl Gpﬁ

=f"{ P 35G,; + hyy 353G, + iy 35G, 3, (3.7)
both of which are now linear in GFV. We note that Eq. (3.6)
restricts the possible choices of C fw, while Eq. (3.7) will
then determine the final form of ,,,..

The next crucial task is to find some solutions of G,
satisfying Eq. (3.1): This is really not difficult since we can
choose some physically unrealistic solutions by themselves.

We will explain this fact below. We consider first the solu-
tion corresponding to the Toda lattice.

A. Toda lattice solution

Let us suppose that we have

G; =Gz =G =0. (3.8)
Then, the condition A,,,(G-G) =0 is trivially satisfied
when we note

N
(G‘G)Iuv = G,uafaﬂG/)’v = z (G,uIG7v - G;JGIV) = O
I=1
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identically. The remaining condition A,,,(G) =0 is also
trivially obeyed except for the cases of (4,u,v) = (l,j,k) and
(7J,k). However, the condition Ay, (G) = 0 can easily be
seen to be satisfied also, provided that G, is a function only
of the variables g; and ¢,, i.e.,

ij = — ij = ij (g;91)- (3.9)
Then, Ay, (G) = 0 follows again trivially from this ansatz.
In this way, we have found a solution for Eq. (3.1). How-
ever, F,, = G,, alone offers a physically unsatisfactory so-
lution since it will not contain any momentum dependence.
The only remaining task is to study the validity of Egs. (3.6)
and (3.7), which are linear differential equations for Gyv'
Equation (3.6) can be easily verified to hold if we choose
£ = 0. The crucial equation (3.7) is satisfied, provided that
we have

N

zl Hiz Om ij = 5]1§ijj — 64 & ij’
where we have set 77, = O for simplicity. A study of this equa-
tion is not unlike the work on the Dynkin diagram of the Lie
algebra 4, _,, whereby we assign a straight line between two
points j and k£ when we have G;, #0. Considering only the
indecomposable solution with £, = 1, we find the following
final solution:

— — 99+ 1 qr — 4.
F;‘k_ij _.fj"(sj+l.kel i+ _f;\ 6k+l,jeL A+|,

(3.10a)
Fr=—Fy= —p; &, (3.10b)
Er=hr=—€(j—k), (3.10c)
where €( j — k) is the sign function
1, j>k,
€(j—k)=10, j=k, (3.11)
- 1) J<k9

and f;(j=1,2,..,N — 1) are arbitrary coupling constants
with

v=0 (j=N). (3.12)

Note that Eq. (3.10) reproduces the result of Ref. 3, which
has been obtained by an entirely different approach. We may
remark that the identity

€(j—k)—e(j—k—1)=06,4+6, . (3.13)
can be used® to verify the validity of N f,,, = 0. We note

1 N
Kl =—2—TI'S= z pj’

1 ’ 1‘ N vot (3.14)
K2 =———TI'SZ —_- Z (pj)Z + 2 f}eq} ‘I/+|’
4 2 j =1 } =1
as in Ref. 3. Therefore, if we identify K, as the Hamiltonian
of the system in Eq. (1.20) with p = 2, this will reproduce
the standard Hamiltonian of the Toda lattice. We may inter-
pret the first two terms 4, + C zvfaﬁxﬁ and the last term
G, in Eq. (3.5) to represent the free kinetic and interaction
terms, respectively.

Our Toda lattice solution has been found to admit a

rather unexpected extra affine structure. Define the affine

connection coefficients I'}, by
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Tf= — Tk =8 (— 1! el — ), (3.15)
while all other components of I‘ﬁv are taken to be identically
zero. The covariant derivatives of both G,,, and f,,, are then
found to vanish identically:

G,.=9d,G,—T3,G,, G =0, (3.16)

Jova =S, I“,ufm st =0 (3.17)

On the other hand, the Bianchi identity’ requires the validity
of

Gll";/l:T - G/l\'.?‘.i = G R vAT + GavR nir + T/ITG

pyvia?’

(3.18)
where R ;. and T‘V are Riemann curvature and torsion
tensors, respectlvely, defined by

,u/{r _ a/l ar rz‘l’y + F:l}a F:,u - r:a
T, =T}, — Fi#.
For the present problem, we can verify Tﬁv #0, but

R}, =0 (3.21)

identically, so that Egs. (3.16) and (3.18) are compatible
with each other. In spite of Eq. (3.16), we must have

F,,#0 (3.22)

because of the following reason. If we have the validity of
both F,, ; = f,... =0, it implies
Sii= O

which has been shown in Ref. 1 to lead to ¢, K, = 0 for any
integer #. However, this is certainly not true for the present
problem. Finally, we simply remark that we have 4, ; #0
and C ﬁ,,, #0. The probable reason for the validity of Eq.
(3.16) canbe traced to Eq. (3.7). Also, the affine connection
introduced here should not be confused with the one used in
Ref. 1 for the definition of the generalized Nijenhuis tensor.

<, (3.19)
(3.20)

8. Momentum-dependent Toda lattice

We can find a more general solution of
A, (G)=A4,,,(GG)=0asin the Appendix, if we allow
linear dependence of G,,, upon the momentum variable p;.
However, since the general case is rather complex, we con-
sider here the simplest solution

G =0, (3.23a)
Gz = — Gy = — Ay (q), (3.23b)
Gy = 0{pj‘4kj (q) —piAp ()}, (3.23¢)

where 4, (¢) is a function of g; and g, alone and 6 is an
arbitrary constant. If 4, () satisfies

ajAkl = 0{5lek; - 5kAk1} (3.24)
we will then verify in the Appendix that G, given by Eq.
(3.23) indeed fulfills the condition 4,,(G)
= A,,, (G*G) =0 after some calculations. With respect to
the 4, + Cg Jopx® term, we effectively adopt the same

form as in the case of the Toda lattice and solve Eqgs. (3.6)
and (3.7). The final solutions are found to be

Fy= — IA—S‘*S,\ =p;6u + 455 (q), (3.25a)
Fp= —Sk= —e(j—k), (3.25b)
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Fo=Sk= 1+ (pa{ —pA\E), (3.25¢)
where we have chosen @ = + 1 in Eq. (3.23) and set

AGE) =68, , [ %, (3.26a)
Ay = 6kJ+1/§e"f_"f+', (3.26b)
with f, = 0 as before. Especially, we calculate
K{= = > TrS‘*’ ij, (3.27a)
j=1
K§+)=LT1'(S(+))2
4
1 4 2 G
=? 2 )%+ 2 fpj i (3.27b)
=
- 1 _
K¢ >=T (S )2
1 X g
=5- z )7+ Z fipio €Y, (3.27¢)
=y
K§+) _l_Tr(S(+))3
6
1 X 94— 941
=32 @’ DRI
= j=1
+pfif €L (3.27d)

If we identify K § ¥’ or K § = as the Hamiltonian of the sys-
tem, we then see that the interaction term depends linearly
upon the momentum p,. This is the reason we call the present
case the momentum-dependent Toda lattice. Both the usual
Toda lattice and the momentum-dependent Toda lattice are
integrable since K |,K,,...,K y are clearly® algebraically inde-
pendent.

The present model also admits an extra affine structure
with zero Riemann curvature tensor. Let us set

I} =68, 6,
[ =T =8, (—1)!**(l - k), (3.28b)

while all other components of Fﬁv are set to be zero; we take
6= 1 1in Eq. (3.28a) according to two solutions 4 ;*’.
Then, we can again find

(3.28a)

G, =0, (3.29a)
Yir =0. (3.29b)
However, in contrast to the Toda lattice case, we now have
Jiva 0, (3.30)

although nonzero components of f,,,, are constants in the
canonical frame. The main reason for Eq. (3.30) is the sign
difference in I'; between Eqgs. (3.15) and (3.28b).

IV. SOLUTIONS FOR THE CASE N=2

For the special case of N = 2, we can find solutions of a
more complicated type: this is because we have

Ay (F) = Q557 (F) =0, (4.1a)
Ay (F-F) = Az (F-F) =0, (4.1b)

identically for this case since the latin indices /, j, and &k can
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assume only the two values 1 and 2. Therefore, we need only
satisfy equations of the form
Az (F) = A (FF) =0, (4.2a)
A (F) = A5 (FFF) =0 (4.2b)
for k = 1 and 2, which simplifies the problem considerably.

Also, for N =2, it can be verified that the following special
identity for any antisymmetric tensor F,,, is valid:

(F-F),, =(K,— K1), +K,F,,. (4.3)
Therefore, if we have A, (F) = 0, then Eq. (4.3) gives
Alyv (F'F') =f;4v a/IKZ +.fv,{ ayk2 +f;1y avkz

+F,0,K+F,dK +F, 3K, (44)
where for simplicity, we have set,

K,=K,— K3
Equation (4.4) offers a simple check for the validity of
A, (F-F)=0. Moreover, Eq. (4.3) implies that all
K, (n>3) are polynomials of K, and K,. For example, we
will have

K,=1TrS’=KK, - }i(K,)’

by multiplying £**f,,f ™ to both sides of Eq. (4.3).

However, we have to consider the nontranslation invar-
iant solution since the translation invariant solution for
N =2 is trivial: Because of this, we must now take the qua-
dratic expression (2.25), rather than the linear expression
(2.21), for its free parts since the latter always implies the
conservation of the total momenta p, + p, and forces the
theory to be trivial.

We make the following ansatz:

F}; = _ij': —‘Sjk(pj)z_Ajk(q)) (4.5a)
E; = _§jkpj +§kjpk: (4.5b)
Fy =p;Bi;(q) —p By (q), (4.5¢c)

for some constant £, and some functions 4, (¢) and B, (g);
note that this choice is a combination of Eq. (2.25) with
h,., = 0 and that of G,,, studied in the Appendix. However,
in this case, we can directly analyze Eq. (4.2) without many
complications. We then find the following two types of solu-
tions.

A. Solution (i)
We set
J=Crexp{[2/(& + £12)1(q + g} (4.6a)
G = Cyexp{[2/(&) — 1)1 (g, — g2)} (4.6b)

for the arbitrary constants C, and C,. If we have
Ey+En=00r&, —&,=0,then weset J=0or G=0,
accordingly. After some calculations, the solution is given by

4, =6+ 6G), (4.7a)
Ay =§E1(J—G), (4.7b)
Ay = — A =4& — &) — 186 + £1)G, (4.7¢)
B,= —J—-G, (4.7d)
B,,= —J+G. (4.7e)
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Then, we calculate
K, =3TrS=pi +p; + 4, + 4
=p} +p} + (&1 + £12)C,
xexp{[2/(&) +£2)1(q, + g2)}

+ (€21 — £1)Crexp{[2/(& — £12)1(g, — ¢2) },
(4.8a)

K,=1TrS?=4(K)* — H2pp> + (&o1 + €120
— (£ —£)G Y (4.8b)

Since K, and K, are algebraically independent, this model is
integrable. However, this case is dynamically trivial because
of the following reason. We make the canonical transforma-
tion (q,-,Pj)—'(stPj) by )

Q= (1/V2) (g, + ), Q= (1/\2)(q,— 92),
Py = (1/42)(p, + p2), Pr=(1/\2)(p, —p2)
where we have

2 2
f= Z dp; Ndq; = z dP, NdQ,.

i=1 i=1
However, then,

Kl =H1(P1,Q1) +H2(P2’Qz)

is a sum of two independent Hamiltonians H, and H,, where
H, and H, have the forms

Hy =P + C{ exp(BQ)),
H,=P; + C; exp(yQ,)

for some constants C;, C, B, and y. Nevertheless, the va-
lidity of the hierarchy equation is still nontrivial.

B. Solution (ii)

A more careful study of Eq. (4.2) with (4.5) reveals
that we can find a completely new type of now dynamically
nontrivial solution when one of £, and £,, vanishes. Here,
we assume &,, = 0, but £, #0. Setting

J=C,exp[(2/£,5)(q, + ¢2) ], (4.9a)

G=C,exp[(2/£:,) (g~ g1 ], (4.9b)
the new solution is found to be

Fii= —pt — 6, (4.10a)

Fy = —Pg + &0 + G), (4.10b)

Fi3 =i§12(J—G) —i¢(y), (4.10c)

2 dy

Fp=— —;—512(1— G), (4.10d)

Fi,=p,(V+6) —p,(J-G), (4.10e)

Fz = —§p,. (4.10f)
In Eq. (4.10), we have defined

y=1(2/§12)q, (4.11)

and ¢(p) is any solution of the second-order differential
equation
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Ce+Ce > d
Ce¥ — Ce™"dy
which can be integrated to give

#(y) ={1/[Ce¥ — Cre*1*Ha, + a,[Cie + Cre ~*]}
(4.13)

2
j—yz¢(y) +3 o(y) + 26(y) =0, (4.12)

for another set of constants @, and a,. Then, we calculate

K =pi +05+80) —£,(J+G), (4.142)
1?2=K2—%(K1)2= - p.pz—é—é’,z(J—-G) ’
— (P + £.(J+ G)o ()
+%§12(J—G)%¢(y). (4.14b)

We can again verify the validity of A, (F*F) = 0 from Eq.
(4.4). Also, this case is clearly dynamically nontrivial, in
contrast to solution (i).

We can find simple forms of ¢(y) for some special
choices of the constants C, and C,, redefining @, and a, suit-
ably, as follows.

For C, =0, C,#0,

() = a,e® + ae”, (4.152)
for C, =0, C,#0,

d(y)=ae " +ae ¥, (4.15b)
for C, = C,#0,

#(y) = [1/(sinh p)?][a, + a, cosh y], (4.15¢)
and for C, = — C,50,

#(y) = [1/(cosh y)?][a, + a, sinh y]. (4.15d)

If we identify K, as the Hamiltonian of the system, and
if, for simplicity, we set

a=12/¢&,, (4.16)
then the potential of the system is identified as
V(g1,9.) = d(ag,) — £,{C, explalg; + ¢2)]
+ C explalg, —¢.) 1} (4.17)
Especially, if we choose C, = 0 and set
C=1¢£,,GC, (4.18)

then the system possesses the two conserved quantities
K, =pi +p; +a,exp(ag,)
+ a, exp(2aq,) — 2Cexplal(g, —¢,)] (4.19)

and
K,= —{pp, + Cexplal(g, — q) 1} — (p,)?

X [a, exp(aq,) + a, exp(2aq,)] + a,C exp(ag,).
(4.20)

We would not have suspected the existence of the second
conserved quantity K, for such a relatively simple Hamilto-
nian K, unless we systematically proceeded, as in the present
case.

_ The present case is also integrable since X, and K, (or
K,) are algebraically independent. Also, the explicit form of
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the Hamiltonian K, given by Eq. (4.19) or (4.14a) suggests
a close relationship between the present model and that of
Olshansky and Perelomov,® who utilized an entirely differ-
ent approach based upon the root system of the exceptional
Lie algebra G,. Note that K, in Eq. (4.14a) may be interpret-
ed to represent a reduced Hamiltonian of a translation-in-
variant three-body system at a center-of-the-mass frame.

V. GENERAL QUADRATIC PROBLEM

In Sec. II, we analyzed the linear problem for F,,,. In
this section, we will discuss the same for the quadratic case.
For simplicity, we set

F,=H,+G,, (5.1)

H,, =h,, +Cif.px (5.2)

G, =10,,.5x%", (5.3)
where 6,5 are constants satisfying

0 ap = — 0. iap » (5.4)

0,veps = O,upa (5.5)
Although we can solve the general problem

A, (F) =8, (FF)=0, (5.6)

we shall assume here that both H,, and G,, are separate
solutions of the problem, as in Eqgs. (3.1) and (3.2) with Eq.
(3.4). First, the condition 4,,,, (G) = 0 implies the validity
of

eyv/la + ev/l,ua + 9/1;41/(1 =0. (57)
Then, with the help of Eq. (5.4), (5.5), and (5.7), the con-
straint A,,, (G*G) = 0 is found to lead to the following

Tuv,/iaﬁr + Tv/l;,uaﬁ‘r + T/Iu;vaﬁy =0, (5.8a)

where we have set
T

uyviAaBy

= erya/{.f Tpepv[)‘y + ery/)’/lf Tpepvay + eryy/lf Tpep\'ﬁa

+ eT/tanTpepvyA + Hrpyliffpapva/l + Gr,uayfrpepv/}/i .
(5.8b)

Wenotethat T, ;,., is totally symmetric in the indices 4, a,
B3, and 7, but antisymmetric in 4 and v because of Egs. (5.4)
and (5.5). If we use Eq. (5.7), then Eqgs. (5.8) can be slightly
simplified to become

e/luar Tpepvﬁ'y + 6/1‘14[3’7' Tpepvya + elyyrf TpepvaB
+ ewlarf Tpep,uﬁy + HVABT Tpepyra + ev/ly‘rf Tpgppaﬁ
+ eyvarf Tpep/lﬁy + g,uvﬁff Tpep/{ya + 0luvy7' Tpepiab’ = O‘
(5.9)

Evidently, the analysis of Eqgs. (5.7) and (5.9) is still
difficult. To simplify the notation, we introduce an abstract
vector space V spanned by the 2N basis vector
X, (u= 1,2,....2N) and define a triple-linear product
[X,Y,Z]eV for any three elements X, Y, and ZeV by

[X,.X,.X,] =f"0p,..X,. (5.10)

Then, first, Eq. (5.5) is rewritten as
(XY, Z]=[XZY]. (5.11)
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On the other hand, Eq. (5.9) can be shown to be equivalent
to
[[ZX)1XX]-[[ZY,X].XX]

=[YX[Z2XX]] - [ZX([YX,X]]. (5.12)
This fact can be demonstrated as follows. Let £#, 7*,and {#
be three arbitrary numerical vectors and set

X=£"X,, Y=1'X,, Z=("X,. (5.13)

When we insert Eq. (5.13) into Eq. (5.12) and use the arbi-

trariness of &, 5*, and ¢*, Eq. (5.12) gives a quadratic
identity involving 6,,, . in view of Eq. (5.10), which can be
shown to reduce to Eq. (5.9) when we see Eq. (5.7).

Next, we have to rewrite the remaining conditions (5.4)
and (5.7) in the same basis-independent notation. Introduc-
ing the bilinear antisymmetric nondegenerate functional
(X,Y ) by Eq. (2.9), these are indeed recast in the forms of

XIYZW]) +(VIZX,W]) +(Z[XY,W])=0.
(5.15)

In conclusion, the desired solution has been reduced to a
study of a triple-linear system satisfying Eqs. (5.11), (5.12),
(5.14), and (5.15) for the arbitrary vectors X, Y, Z, and
WeV. Note that we can rewrite 6,,,,5 as

Ouvap = (X5 [ X, X X ])-
Finally, we must consider Eq. (3.4), which gives
faﬁ{h;m 9w1/3r + hva BAVBT + h/la Hva'r} =0 (5.16)
and
fHc pat v Ouigp + Claf o Ouipr + Clofyr sy
+ ClafOsusr + Clayr o + ClafpOpunpr

+ Cr%fyb’ayarp + C}./ }/Bevarp + C,any/}elarp} =0.
(5.17)

When we introduce the commutor [X,Y] in V by
[X,X.] = ChX,

then Eq. (5.17) is also further rewritten as

([X[ZY,W] - [Y.ZW]]LW)
+{[LXZW] - [ZXW]]W)
+/(Z[Y X W] - [X,Y, W] W)
+HLZLIXW W) +(ZX [, W W])
+{(XYLIZWW]) =0 (5.19)

when we use Eq. (5.7). We can also rewrite Eq. (5.16) ina
basis-independent way by introducing another antisymme-
tric bilinear functional A(X,Y) by

(5.18)

hX,X,)=h,,. (5.20)
Then, we find
XY, ZW]—-[ZY,W])

+ Y[ ZX W] — [X,.ZW])

4+ hZ[X, Y, W] - [YX,W])=0. (5.21)

Although many triple-linear systems satisfying similar
relations have been studied by many authors®~'? the present
triple system is, unfortunately, quite different from those
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already investigated and its study will be postponed for the
future. However, we would like to simply mention that our
triple system possesses a nontrivial solution (2.25), as well
as a once-iterated solution F,, = (H-H),, for the linear
form H,, when we consider only the dominant quadratic
terms.
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APPENDIX: SOME SOLUTIONS FOR J,,, (G-G)=0

Here, we will study a generalization of the solution giv-

en by Eq. (3.23).
We seek a solution of form

Gr = — Ay, (A2)
Gy =p;By; — P B (A3)

where 4, and Bj, are functions only of ¢; and g, . Then, we
can easily verify that the condition A, (G) = O is satisfied
if we have

ajAkI = 5lekj - 5jk Cu (A4)
for some functions C,,. Next, we set similarly
ajBkl = 511ij - 6jkEkl (AS5)

for some functions D,; and E,; of ¢; and g, . Moreover, when
we note

(G-G);z =0, (A6)
(G'G)jZ = — ZAlelk’ (A7)
7
(GG =Pj(z AkIBIj) — P« (2 Alelk)
7 7
+ ZPI(AﬂBkl —AuBy), (A8)
7

then we can readily find that the second condition

A, (G*G) = 0is also satisfied, provided that we have the

following two equations: First, we must have

A, (B, — By) +A4,(By —B,) +4,,C; —4,C,; =0
(A9)

and second, we must have

PO + Pk Oy + Pi1Qy =0,
where we have set
Qi = — Que = (ByyBy; — ByBy;) + (AR Ey; — Ay Ey)
+ (A Dy — AyDy;). (Al1)
Since the lhs of Eq. (A10) is totally antisymmetric in the
indices j, k, and /, Eq. (A10) is trivially satisifed for N<2.
This is one reason why we found some complicated solutions

for N=2, as in Sec. IV. For N>3, Eq. (A10) can be also
obeyed if we have

(A10)

Qi = 8y Py — 8, Py (A12)
for some functions P,,.
Next, let us set
Susumu Okubo 1051



Hji = — 5jkp1 s (A13)

Hy=hz, (Al4)

H, =0 (A15)
Then, the sum

F,=G,+H,, (A16)

will satisfy Eq. (3.1). The remaining condition (3.4) can
also be fulfilled, first if we have

ki (By + By) + hz1Cy — 7Cy = 8,44,y — 6545
(A17)

and second, if there exists a function Y, satisfying
TEDjk - h?jEjk + (5k1 + 5jl)Bjk = 6jk Y}/- (A18)

These conditions (A17) and (A 18) are still not easy to ana-
lyze. However, there exists a simple solution. Suppose that
we have

Cy =B, =64,, (A19)
Dy =E; =0°4, (A20)
for a constant 8. Then Egs. (A9) and (A10) are identically
satisfied with @, = 0, while Eqs. (A4) and (A5) reduce to
ajAkl = 0(511Akj - ajkAkl)’ (A21)
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which is precisely Eq. (3.24). Finally, both Egs. (A17) and
(A18) become identical and are rewritten as

9(/17; - h77)Ajk = — (6 + 6jI)Ajk7 (A22)

with a special choice of Y;; = 0. Then, the final solution of
Egs. (A21) and (A22) yields the result of Eq. (3.25) for
6= +1.
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Quantum mechanics of a (nonrelativistic) system S localized on a topologically nontrivial
manifold .# as its configuration space is based on a quantization method, which, in general,
reflects global properties of .#, i.e., some of the observables of S will “feel” the topology:
There are topological effects and inequivalent quantizations on .#". Some straightforward
examples are given for such effects, using Borel quantization (BQ), the pointed plane as
manifold .+, and the energy operator with harmonic potential as observable. Two topological
effects exist. There are unitarily inequivalent BQ on .+, which are equivalent to the usual
quantization on the plane with a topological potential, which has the form of a Bohm—
Aharonov potential. There are different self-adjoint extensions of the energy operator for a
given BQ that in some cases are related to another kind of topological potential. These effects
are discussed in detail, especially the self-adjoint extensions of the energy operator. An
experimental setup to verify some of the results is suggested.

1. INTRODUCTION

Observables of a (nonrelativistic) physical system S
that is constrained on a smooth manifold .# as its configura-
tion space can depend on global properties of .#, e.g., on the
fundamental group 7, (.#"), its character group 7 (.#), co-
homology groups H?(.#,Z), etc. For a quantized system
this is the case for a large set of observables. Unitarily inequi-
valent quantizations exist reflecting the topology of .#.
They predict different experimental results and show the rel-
evance of topological effects. For some .#, inequivalent
quantizations of certain observables can be parametrized
through differential n-forms, behaving like potentials. They
are called topological potentials of the n-+ Ist kind.

The mechanisms that produce such effects depend on
the quantization method and the choice of the observables.

We report on two mechanisms: the Borel quantization,
i.e., quantization of the kinematic on .# and the correspond-
ing quantization of an energy observable H. After a general
outline of the method (Sec. II, see also Refs. 1 and 2) we
apply the results to a one-particle system constrained on
A = R?> — R' moving under the influence of an external
harmonic force (Sec. III); because of its symmetry the prob-
lem is equivalent to one that is constrained on
M , =R? — {0}, i.e., on the pointed plane. There appears a
topological potential of the second kind, which has the form
of the Bohm-Aharonov? potential. The self-adjointness con-
dition for the corresponding Hamilton operator creates in
some cases an additional (singular or point) potential of the
first kind. We present an interpretation of the results and
suggest (Sec. IV) an experimental setup to verify some of
them.

. THE QUANTIZATION

A. Topology and kinematical observables, topological
potentials of the second kind

Weusea “conservative” quantization method. Classical
(generalized) position and momentum observables are
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modeled via Borel sets B taken from a Borel field Z (.#)
and vector fields X taken from the set &7, (.#) of complete
vector fields. The flow ¢ ¥ of X acts on Be Z (.#') as

B, ={m'|m’ = ¢ ¥(m), meB}. (D

The geometrical object (# (A4 ),# .(.#)) is called Borel
kinematic on.# .' For its quantization we need amap £ into
the set of self-adjoint operators . &7 (J7°) on some Hilbert
space with a common, dense, invariant domain:

D: B(M)DB— E(B)eS A (),
D: F(M)DX—>P(X)eS oA ().

Here 2 should respect measure-theoretic properties of
% (A ) and the Lie-algebraic structure connected with £ .
Furthermore, some additional technical conditions should
be fulfilled. We require that P(X) is local (see Ref. 1) and
that for any X a one-dimensional unitary group V¥ exists,
such that—as quantum analog to (1)—a kind of imprimiti-
vity condition holds

VX oE(B)oV¥ =E(p* ,(B)). ()

It turns out that this Borel quantization, i.e., the map 2, is
not unique. Up to unitary equivalence there is a 1:1 corre-
spondence between different £ and the elements of
¥ (M) @R [7m (. A) is assumed to be finitely generated]; R
is the real line. The explicit forms of E(B) and P(X) are
available. The Hilbert space 57 can be realized as comple-
tion L3 (n(.# );(-|*),u) of the linear space of sections in a
complex line bundle 7(.#) over .# which are square inte-
grable with respect to a Hermitian metric {-|-) and a finite
Borel measure 4 on .# . In general, several nonisomorphic 7
exist over .# . For trivial bundles the space 57 is spanned by
square integrable functions, i.e., # = L *(.#;u); this is de-
noted as the standard case. Here inequivalent quantizations
are in 1:1 correspondence with the elements of 7*(.#)/
('m)*(#)®R with (I'm)*(.#) as the subgroup of
¥ (.#') generated by all elements of finite order.
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We give now the results for the standard case. Here
E(B) is a projection operator (as it should be); £ maps real
functions finto multiplication operators

2:f—>Q(f): QUAHYY=r 1",
feC=(# R), YeL*( M u).
Here P(X) is a differential operator of first order, essentially

self-adjoint for all X on C ® (.#,C) (a similar formula holds
for the general case.):

2: X—P(X); P(X)=iX+o(X)+ (i/2+¢)

xQ(div, X); (4)

here wis an arbirary element of the Abelian group Z ' (.#') of
(real) closed differential one-forms and ¢ some real number.
The X acts as Lie derivative and the divergence of X is meant
with respect to u = p(x,y,2)dx dy dz, p > 0, and smooth (lo-
cally). The physical interpretation of @(X) as a potential,
i.e., as topological potential of the second kind (vector po-
tential), is obvious. (Topological effects can be traced also in
other quantization methods, e.g., in the path integral ap-
proach.*)

For different w,,w,€Z"'(#) and c¢,,c,€R the map 2
yields different results. These are unitarily equivalent if and
only if

(3)

¢, — ¢,iszeroand w, — w, islogarithmically exact. (5)

Logarithmically exact one-forms form an Abelian subgroup
LY (#)in Z'(.#). A closed one-form a is in L '(.#), if
there exists heC* (#,S '), with

a(X) = ih ~Y(Xh). (6)

One can show® that Z'(#)/L'(A)=7*(M)/
(I'w,)*(A); i.c., the elements of Z'/L "' give inequivalent
quantizations. The dimension of Z '/L ' is finite and equal to
the first Betti number b, of .# . The de Rham reconstruction
theorem® tells us how to construct a basis p;, j = 1,...,b, in
the vector space Z '/L ' and linear combinations of p; give
those w, or topological potentials, with inequivalent quanti-
zations

b,
o(X) =Y Bp;(X), 0<B;<2m, (7
j=1
which are parametrized via (5,,...,8,, ,¢). The explicit calcu-
lation of the p; can be difficult, but is in principle possible. An
example is treated in Sec. III.

The close connection between Borel kinematics and to-
pology through the quantization method is related to the fact
that the set #°, (.#) contains infinite-dimensional Lie alge-
bras comprising enough flows to feel the global geometry of
M

B. Topology and energy observables, topological
potentials of the first kind

We refer again to a conservative quantization of the en-
ergy, given through the Hamilton operator that is a function
of the P(X) and Q( /), i.e., a partial differential operator.
The ordering of the noncommutative factors must be pre-
scribed, such that H is symmetric. (For a method to select
certain ordering see Ref. 2. In general the measuring process
of the energy observable should determine the ordering. This

1054 J. Math. Phys., Vol. 30, No. 5, May 1989

needs a theory of measurement, which is not yet available. )
However, in general, this H is not essentially self-adjoint.
Because this is needed for the quantum mechanical probabil-
ity interpretation, we have to construct self-adjoint exten-
sions H® of H (a is a label index). The extension H* should
depend also on the topology of .#/, as there are enough Borel
sets on .# and the inner product in L A ;) feels any
Be% (#). But unlike the situation in the previous section, a
general extension theory for partial differential operators on
a given .# is not available that parametrize families of ine-
quivalent extensions through geometrical objects living on
A . Different types of H have to be treated separately de-
pending on .# . Powerful techniques are known. For the ex-
ample in Sec. III we use a method of Rellich.” In special
cases, extensions H” are equivalent to an additive term

H*=H°+V® V=4 —R, V°=0. (8)

Here V¢ is a O-form and can be viewed as a topological po-
tential of the first kind. For special Hamilton operators all
inequivalent quantizations for some H are constructed in
Sec. I1I and topological potentials are calculated.

lll. THE HARMONIC OSCILLATOR ON THE POINTED R 2

A. The model, its quantization, and its Hamilton
operator

Now we apply the approach to the manifold
4, =R®> — R'and a particle (mass M) moving on .# | un-
der an external harmonic potential V(x,y,z) = (Mw*/2)
(x2 4+ y?) (x,p,z are local coordinates) and with the usual
Hamilton function. The topology of .#, is not trivial:
T (M)=Z, 7 (A )=R (mod 27) and b,(.#,) = 1. For
simplicity (see also Ref. 8) we choose ¢ = 0 and furthermore
dy =dxdydz.

For a quantization of the kinematics a basis element p of
Z'(.#,)/L"(#,) must be calculated®; one gets with the
physically interesting vector fields (X,) = (d/dx,d/dy,d/
dz) for the corresponding topological potential  of the sec-
ond kind (independent of the external potential)

p(X,) = [1/27(x* 4+ y»))1( — y,x,0), 9
o(X,) =PpX,), 0<B<2m. (10)

Here w (X,) has the form of a Bohm—Aharonov potential?
(e/fi)Ap, (x,p,2), where A /e is the magnetic flux of the
(infinitely thin and long) R’ solenoid. The result is connect-
ed with the topology of the Bohm—Aharonov configuration
of .# ,. We stress here that the appearance of @ (X, ) does not
tell us anything on its physical interpretation. The quantiza-
tion gives no hint how to realize a topological potential in
practice. If there is some deeper connection between quan-
tum mechanics on .#, and electromagnetism it is not
known.

For the rest of the paper we interpret w(X,) as Bohm-
Aharanov potential, in which a particle of charge e moves.

The quantization of the classical Hamiltonian for the
system gives

" 1
H{,, =§‘A}Z[ —#P(X,) ]+ QM
or
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2
H‘(Il) = —-1——[ — ﬁl(—a——a— —-a—) - a Tx'z—‘l_i‘( _y9x)0)

oM Ax 'y 3z +y
Mo?

2
where a = A3 /(27). Because of the axial symmetry the z
part separates as a free system in R{"’ and we are left with a

particle constrained on .#, = R*> — {0} = R? with a Hamil-
ton operator

1 fd d 1 2
Y VR
2M[ ' dx dy ax2+y2( »)

+ x4+ %), (11)

2
+¥?ukuﬁ. (12)

The H? has to be essentially self-adjoint on a suitable domain
DCL?*(R? dx dy). These domains are not obvious [e.g., H°
is not even symmetric on the natural domain
D = {¢(x,p) |eL 2(R%, dx,dy), C = (R%C)}].Sowehaveto
construct self-adjoint extensions H** of H° as explained in
Section II B. As a first step we will reduce H* to differential
operatorson S ' and R* (Sec. III C 2). Then we will find all
self-adjoint extensions H** (Sec. III C). We calculate the
(discrete) spectra of H*“, discuss various cases, and show
the appearance of (singular) topological potentials of the
first kind (Sec. III D).

B. The radial Hamilton operator
In polar coordinates

x=rcos@, y=rsing,

the Hilbert space of square-integrable functions over R? can
be decomposed as

LARYdx dy) = LR rdr) 8 LS dp)

— o LRtrdns[em™], (13

where [ ] denotes span and meZ. The differential operators
(12) separate to

hz( 1 a? 1
H' = ——[3d2+—4 ——-—) — Mw*r
o\t TR TN
# 2ia
— a2 +==9 ) 14
2Mr2( o i’ (4
The angular operator
5; + (2ia/#)d, (15)

is essentially self-adjoint on C = (S'),'® with nondegenerate
discrete spectrum — m(m + 2a/#) and the eigenfunctions

e meZ. (16)

Here H" is essentially self-adjoint on a subset of .#%(R?) iff
all members of the family of radial Hamilton operators

1
L s" Y4+ R,
N1 +v)/2—k)
Wip(s) =e vy —1
rg—k "

(—1)"n! + O(s)
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ﬁz
2Mr

a,m

2
[—a.0ay+H(mr i)+

M2? '3}
#i

hz

(17
on corresponding subsets ¢ 2™ of .£?(R™, r dr) are essen-
tially self-adjoint.'® Essentially self-adjoint extensions of H*
and of the family H*™ have the same eigenvalues. The eigen-
functions differ by a factor e”% only. Considered as differen-
tial operators on a suitable function space, H*" are singular
Sturm~Liouville operators, for which Weyl’s limit-point,
limit-circle theory can be applied.'' Note that H “™ depends
on

v=|a/fi+ m)| (18)

only.
For reasons of convenience we introduce the dimension-
less quantity

k=E/(2%w), (19)
the new variable

s = (Maw/#)7, (20)
and the new wave function

w(s) = ru(r). (21)
Then the eigenvalue equation

H*"u(v,E;r) = Eu(v,E;r) on 427 (22)
becomes on & " C .2 (R*,s~ ' ds)

Awv,k;s) = — kw(v,k;s), (23)
with

vt

[We have a singular Sturm-Liouville eigenvalue problem
— (pu')" + qu = kKu in the interval 0 <5 < o0, with p = 1,
K=1/5,g=1—(1—-+%)/(45%).]

C. Self-adjoint extensions of the radial Hamiiton
operators

Equation (23) is the Whittaker differential equation. So
all solutions for given v,k are linear combinations of the
Whittaker functions'?

w,(v,k;s) = Wiz (8), (25)

wy(vks) =W _,,(—s). (26)
For large s the asymptotic expansion holds,

Wi (s)y=e 1+ 0(s|™H} (27)

So w, falls off exponentially while w, grows exponentially.
Hence the latter is not normalizable in .#?(R*,s~ ! ds) and
we have the limit-point case at s = oo for all v.

For small s we recall the expansions

(v>0),

(v=0, j—k# —n), (28)

(V=0y %_k= _n))
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where
F, =[lns—2¢(1) +¥(1/2— k) + O(|sIns|) ],

o(ls|*~ ", for v>1,
R, =10 (In]s]), for v=1,
o(l), for O<v<l,

¢ is the digamma function and n = 0,1,... . To get the corre-
sponding expansion for negative argument, replaceIn ( — s)
by ir + Ins.'”?

It can be easily seen that

J‘|wi|2£1£<oo, withc>0, i=12, (29)
0 s

in the range 0<v < 1. But at least one of these solutions is not
normalizable at s = 0 for v>1.

So at s = 0 we have for v>> 1 the limit-point case and for
0<v <1 the limit circle case.

1. The casev>1

We have the limit-point case at both ends of the interval
[0, ). Hence A" is symmetric and even essentially self-ad-
joint” on

3! = {wjwe.L*(R*, s~ ds),w"
(30)
To get the discrete spectrum we have to require that w, from
Eq. (25) is normalizable at s = 0, i.e., the leading term in the

expansion (28) must vanish. Hence we get for the eigenval-
ues

absolutely continuous}.

k=n+[(v+1)/21, n=0,1,2,.; (31)

the eigenfunctions (25) can be expressed in terms of general-
ized Laguerre polynomials,

Wi (s) = (—1)mle™ s+ D2L (). (32)

2. The case O<v<1

Now we have the limit-point case at s = oo and the lim-
it-circle case at s = 0. Hence additional boundary conditions
at s =0 are necessary. Given any normalizable function
v(s), A¥ is symmetric on

@, = {w|weL*(R* s~ ds),w"

absolutely continuous, [w,v], = 0}, (33)

with [w,v],: = v(s)w*' (s) — v'(s)w*(s). This can be seen
easily by partial integration:

(w,A%) — (A%uw) = [wwl], — [wo],. (34)

For linear combinations w of functions w, from Eq. (25)
with different k, we have {w,v] , = 0. So A¥is symmetric on
any domain, whose elements satisfy the boundary condition

(35)

This is precisely the condition that makes A" essentially self-
adjoint.” Different functions v(s) can label the same domain.

To make the boundary condition {35) more accessible,
we follow Rellich? and use a special solution system of the
Eq. (23). If linearly independent solutions w;(v,k;s),
wy(v,k;s) of Eq. (23) satisfy

[wpl,=0.

1056 J. Math. Phys,, Vol. 30, No. 5, May 1989

[w;, (vk;s),w; (v,k';5) ], =0, i=34,
[wy(v,k;8), Wy (v,k"'55) 1o = — [wa(v,k;8),w3(v,k "5) 1,
(36)

then the boundary condition (35) is valid for all linear com-
binations

wi(v,k;s) = sin(a)w,(v,k;s) + cos(a)wy{v,k;s), (37)

with O<a < 7 fixed. Using trigonometric functions here is
just a convenient way to parametrize the coefficients. Differ-
ent values of a specify different (inequivalent) essentially
self-adjoint extensions 4 “*.

For v > 0 a possible choice of @, and o, are the Whitta-
ker functions'?

wy(vk;s) =M, _,,(8), wy(v,ks) =M, . ,,(s),

(38)

as they behave at s = 0 like
ws(s) = s 721 + 0(s)),
w,(s) = s 21 + O(s)).

For v = 0, these two solutions become identical. If w,
has the same form as in Egs. (39) and (38), and if w, has an
expansion

w,(s) =5"(1 + O(s))In s, (40)

then the conditions (36) are satisfied. The explicit form de-
pends on k. We can use

(39)

wi(0,k;s) = —TU+KW _o(—5)

+Q2¢(1) — YA+ k) —imM, , (s) (41)
for ke{ — L,1,3,...}, and
wy(0,k;s) = — T — k)W, (5)
+ (2¢(1) — P — k)M, 5 (s) (42)

for all other k€R. Hence, for each value 0<v < |1 there exists
an essentially self-adjoint extension A™“, with O<a <,
whose domain is

. = {w|we[w], weF?(s™" ds),w"
(43)
where [w®] is the span of the w® in Eq. (37) with ws, w, from
Eqgs. (38), (41), and (42).

Next we calculate the spectra. The normalizable eigen-
functions of A™“ are those functions w” from Eq. (37) which

are normalizable at s = o0, i.e., which are multiples of w,.
For 0 < v < 1 we use the expansion of w,,'?

absolutely continuous},

I'(v)
’k; = !k;
Wik = T2 — k) )
TC=%) k). (a4

(1 —v)/2 —k)
Comparison with Eq. (37) gives the discrete spectrum of
A”“ as solutions of («a and v are fixed)

TV —v)/2 — k)

tana = . (45)
I'(—wvT((14+v)/2 —k)
For a = 0 we have
k=[(1+v)2]1+n n=0,123., (46)
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and for a = 7/2,
k=(1—-v)/2+n.

The eigenfunctions are given by Eq. (25).

For a numeric evaluation of the discrete spectrum (45)
in the case of v = | see Fig. 1. In the limit @ — 7, the eigenval-
ues tend towards those given for a = 0, except for the lowest
one, which goes to — oo.

For v =0, ke{ — 1,1,3,...}, we have to require that the
coefficient of W _, o( — 5) vanishes (w,~w, in this case).
This implies a@ = 0. So for v =0 and a = 0 we get

k=14+n

(47)

(48)
the normalized eigenfunctions (25) can be expressed using
Laguerre polynomials

w,(0,k;s) = nle ~*%[sL, (s). (49)
For all other k&, comparison of Egs. (28), (37), and (42)
gives

sin a2¢(1) — (1 — k)}+cosa=0
or

tana = — 2¢(1) — (4 — k). (50)

Here a = Oyields k = n + } (the case was discussed above),
and a = 7/2 gives for k

U3 — k) =29¥(1). (51)

For a numeric evaluation of Eq. (50) see Fig. 1. In the limit
a -, again the eigenvalues tend towards those given for
a =0, except for the lowest one which goes to — . The
eigenfunctions are given by Eq. (25). All the eigenvalues
calculated above are nondegenerate.

D. Self-adjoint extensions of the reduced Hamilton
operator

The results in Secs. IIT B and I1I C give immediately the
self-adjoint extensions of H? together with their eigenvalues
and eigenfunctions.

FIG. 1. Eigenvalues of the self-adjoint extensions — 4 °* (full lines) and
— A% (dashed lines).
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ForO<v = |a/# + m| < 1 the radial operators A” have a
one-dimensional family of self-adjoint extensions A™* para-
metrized by O<a < 7. The a are independent for different v.
For v> 1 the A are essentially self-adjoint.

For H? with

HWV(E,m;r,p) = EV(E,m;r.@), (52)
V(Em;rp) = W, ((Mo/B)r)r e, (53)

where W(E,m;r,p) is a simultaneous eigenfunction of H°
and the angular operator (15), we get the following scenar-
io.

For vanishing Bohm-Aharonov potential H’ has a one-
dimensional family of self-adjoint extensions H>*, because
0<v = |m| <1 implies m = 0.

For nonvanishing Bohm-Aharonov potential we only
have to consider 0 < a < #; other values can always be ob-
tained by shifting m by an integer value, as the spectrum
depends only on the combination v = |a/# + m]|. This cor-
responds to the range of £ in Eq. (10), and to a change of
magnetic flux in the solenoid by 27#i/e. In the Bohm-Ahar-
onov experiment this maps the interference pattern into it-
self. For a#0 a two-dimensional family H*** appears,
where a, parametrizes extensions for those m = m, #0 with
0<la/#i+ m| < 1. The eigenfunctions are, as indicated in
(53), up to a factor r~'e™ Whittaker functions.

We give now a detailed discussion.

1. The case a=0

The system corresponds to an oscillator in R% a,=0
gives the kinetic-energy extension H®°. Collecting the re-
sults for v =10, 0 <v < 1, and 1<v we have the energy spec-
trum

E% =#w(1+2n+ |m)), (54)

which is the spectrum of the oscillator in R% The spectrum is
degenerate. It can be written as

E°° =tiw(n' +1), n' =0,1,..

with a (d,, = n’ + 1)-fold degeneracy given by
m= —n',—n"+2,.,n.

(35)

The normalized eigenfunctions are
W(ESS ,msrp) = (— 1)"n{(Mao/#) (™ + D/2m]

W e~ (Mor20r [ Lm\(yﬁﬁ rz)ei’""’. (56)

The kinetic-energy extension is not the only one. (As the
introduction of polar coordinates restricts R? to R?, the
treatment of any Hamiltonian on R? with polar coordinates
is delicate.) H® has additional self-adjoint extensions H™*,
which stem from those of A°. Hence the osciilator in R? can
have energy spectra—depending on a,—different from the
oscillator spectrum in R?. As compared to H*?, the degener-
acy of the eigenvalues for even n’ becomes reduced by 1 to
d, =n'. There appear additional -eigenvalues with
E%° | < E%™ < E%° for even n’. The ground state is shifted
to an energy E 3™ < E3°. The situation is given in Fig. 2
(crosses) for a = 0, a, = 1. The eigenfunctions for E :* are

W (E % 0r,p) = W, o((Ma/F)P)r", (57)

where &, are solutions of Eq. (50} for ¢ = a,.
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FIG. 2. Eigenvalues of the self-adjoint extensions H®'/? (crosses) and
H?**%0 (dots) as a function of a/% + m.

In connection with the discussion in Sec. I B it is inter-
esting to check whether the nontrivial topological structure
of R? which is responsible for the exotic oscillators or exten-
sions, can be transferred into a potential that is, e.g., local-
ized in 0 < r < ¥ with ¥ < 1. For this we have to analyze the
behavior of ¥*(E,0;r,@) for small ». The leading term is
proportional to

(58)
The action of the differential operator H® on ¥* (E,0;7,¢)

gives an additional term that can be compensated via a point
potential

Inr.

#r 5°(x)
M Inr

in a distribution theoretic sense (see, €.g., Ref. 13). Obvious-
ly, ¥, is a topological potential of the first kind.

V,(x) = — (59

2. The case a#0

For a, = a, = 0 we have the kinetic-energy extension
H"%°, As above the energy spectrum is (dots in Fig. 2)

E° = fiy(1 4 2n + |a/# + m]). (60)

Comparing with the spectrum of H%° we see that the Bohm—
Aharonov potential shifts all energies of the oscillator in R?.
It does this by shifting the “orbital angular momentum” m
to m + a/# via the centrifugal part of the potential energy
r=%(m + a/#)? in H° The eigenfunctions are
VOUE W mirp) = W, (Mw/#)Pe™r™!,  (61)
with k& from Eq. (19). For a, #0and/or a,7#0 we have, asin
Sec. III D 1, exotic extensions. We find the same eigenvalues
as for H**%, but for any m = 0, and m = m, the correspond-
ing eigenvalue E 2% is smaller than E 2%° and decreases
with increasing @, @, to the next eigenvalue of H*%° respec-
tivelyto — «.Theeigenfunctions are as above, inserting the
energies E 3% %. The case @ = 0, @y > 0 cannot be obtained
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continuously from a > 0, @,> 0, as the two bases (35) and
(34), which are used in the definition of the parameter a, are
not connected continuously. We have no result as to whether
this topological effect can be related to a (singular) topologi-
cal potential.

V. APPLICATION TO A CHARGE IN A HOMOGENEOUS
MAGNETIC FIELD AND A BOHM-AHARONOV
POTENTIAL

A physical setup to realize experimentally the boundary
conditions necessary for the exotic self-adjoint extensions
seems not to be known, but the effect of a Bohm—Aharonov
potential on the energy eigenvalues of a two-dimensional os-
cillator (kinetic energy extension) could in principle be mea-
surable.

To explain this we consider a particle moving in the
superposition

A=ABA + (B/Z)( “’yrx’O) (62)
of a Bohm-Aharonov potential Ay, and a homogeneous
magnetic field perpendicular to the xy plane. As in Sec.

III C 1 the z part separates. The corresponding radial Ham-
ilton operator is

H2*™ = H*™ + ehiB /(2M)(m + a/#), meZ, (63)
with H*" from Eq. (17), where
o =eB/(2M), (64)

that is, in our choice of gauge the homogeneous magnetic
field gives the potential of a two-dimensional harmonic oscil-
lator. The extensions of H #*™ are obtained from those of
H*™ The energies, i.e., the Landau levels in the presence of
the Bohm—Aharonov potential, are for the kinetic energy
extension:

EBS = (ehB/2M)(2n + 1 + |[m + a/#| + m + a/#).
(65)

They split in two level families: The usual Landau levels for
a=0(mg—1)

EZ = (efiB/2M)(1 4+ 2n"), n'=0,1,2,..., (66)

which are infinitely degenerate, and an additional family de-
pending on a (m>0)

E 2= (ehB/2M)(1 + 21’ + 2a/#), (67)
which are
(1 4 »n")-fold (68)

degenerate; note that 0<a < #i.

The experimental problem is to measure the additional
levels (67). Considerations on whether the magnitude of the
effect is big enough to be measured with present day equip-
ment are under way.
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Some technical methods used to solve two- and three-body bound-state equations in
momentum space are described. These methods are, in particular, very efficient when applied
to the calculation of spectra in semirelativistic confining potential Hamiltonians, which are
used in hadron spectroscopy. They have a vast range of applicability.

I. INTRODUCTION

It is remarkable how well the structure of hadrons (me-
sons and baryons) is described by phenomenological poten-
tial models. The interest in these models arose after the dis-
covery of the charmonium and bottomium families, which
were calculated as nonrelativistic bound states of heavy
quarks (c and b) in a confining potential. '~ Subsequently, it
was shown that the masses of hadrons containing the light s
quark could also be calculated with the same confining po-
tential.> These successes have renewed interest in the study
of the spectra and properties of the nonrelativistic Schro-
dinger equations with confining potentials and haveled to a
wide literature ranging from phenomenological models to
more rigorous results.®’

Recently, the desire to also include states composed of
the lighter quarks («# and d) implied the inclusion of some
relativistic effects. Many models have been proposed.®'> A
simple way to incorporate these effects consists of replacing
the nonrelativistic  kinematics by  the form
T=3,(p? + m?)"% This leads naturally to work in mo-
mentum space with integral equations.®'*~'> These integral
equations appear to be singular for confining potentials and
hence need a particular treatment.

On the other hand, the necessity of also considering bar-
yons that are made of three quarks in the same framework
led to the development of techniques for solving the three-
body problem in momentum space, where the problem can
be reduced to a set of coupled singular integral equations by
using hyperspherical formalism.'¢"®

Our aim in this paper is to show these useful techniques,
which are not discussed very much in the literature and
which can also be applied to other problems in physics.

We begin by describing the two-body problem. In Secs.
II A and B, after writing the integral equation for a two-
particle system, we study the kernel of this equation for some
power-law potentials that are the most frequently used in
phenomenological applications. In Sec. II C we then de-
scribe the Vekua—Magnaradze method,?® which can be ap-
plied for solving the Schrodinger equation with a linear po-
tential. Then, in Sec. II D we show a very useful numerical

*) Laboratory associated with CNRS.
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method: the Multhopp technique®"?? for finding the eigen-
states of a Hamiltonian. In Sec. I1 E, we apply the Multhopp
technique for calculating the spectra of the linear and loga-
rithmic potentials.

We then consider the three-body problem. In Sec. III A,
we work in the momentum space and then separate the co-
ordinates into internal and external ones as in Omnés.?* In
Sec. I11 B, we define the hyperspherical harmonics and con-
centrate particularly on two different sets, as described and
used by Fabre de la Rippelle, Simonov, and others.* In Sec.
I1I C, using the internal and external coordinates, we show
how one can separate the total angular momentum to end
with a set of coupled integral equations in only the internal
coordinates for each fixed value of the angular momentum.
We also study the particular case of zero angular momentum
and show that the problem reduces to a set of coupled inte-
gral equations in one variable, with kernels similar to those
of the two-body problem. These equations are very suitable
for numerical calculations. Finally, we give as an example
the spectrum of hyper-radial potential in Sec. I1I D.

Il. THE TWO-BODY PROBLEM

Consider a two-particle system described by the follow-
ing general bound-state equation:

2
[z h(p..>+V(|r,—r2|>~E]|w>=o, (1
i=1

where |¥) is the wavefunction of the system and E is its
energy. The particle (/) is described by its position operator
r; and its momentum operator p,. We assume that the kine-
matics 2A(p; ) is a function of only p, (the magnitude of p,)
and that the potential is radial.

The interest in this general form of the kinetic part is to
allow the treatment as special cases of a semirelativistic kine-
matics by setting 2(p) = (p* + m?)'/? (m is the mass of the
particle), of a nonrelativistic kinematics by setting
h(p) = m + p*/2m, or any intermediate form.

A. The two-body problem in momentum space

In the center of mass system, we obtain the /-wave pro-
jection of Eq. (1) in momentum space by extending the
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wavefunction |¥) on spherical harmonics. Equation (1) be-
comes an integral equation:

(2h(p) — E)uy(p) +f &' P Vipp) =0, (2)
0
with

Vi(pp')= (PP')I/ZJ. rdr V() 1 (pr), 1, ('),
o
(3)

where p and # are the magnitudes of the relative momentum
and coordinate of the two particles and «, (p) is the reduced
wavefunction in momentum space. Here ¥, (p,p’) is the ker-
nel of the integral equation (2) expressed in terms of the
usual Bessel functions J, | |, (x).

In Sec. III, we will show that with kernels of the same
form, similar coupled integral equations can be obtained for
the three-body problem.

B. The kernels of the integral equations for power-law
potentials

The analytic expression of the kernel V, (p,p’) in Eq. (3)
in terms of p and p’ is not always easy to obtain for all poten-
tials and for an arbitrary value of the angular momentum /.

The behavior of these kernels when p—p’ is important.
If the kernel is singular, Eq. (2) is a singular integral equa-
tion. The kernel can have a delta function (or derivative of
delta functions) behavior, in which case Eq. (2) reducestoa
differential equation. The kernel can also be regular and well
behaved, leading to a nonsingular integral equation.

To see this explicitly, we will study these kernels for
power-law potentials that contain as particular cases the
confining potentials, which are of great interest in phenome-
nological applications.

For a potential ¥(r) = r?, one can easily show the fol-
lowing general formula:

T(+372+4+8/72) 1
Q2m)'2 TU+DT(-B/2) (pp')y +H72
+1 241
XJ du (—w) )
I [(pz+P12)/2ppl_u]l+3/2+5/2
(4)
Equation (4) is valid for all values of # where the gam-
ma functions are defined. The values excluded are
p=024,..0orf= —3,—5,—17,.. . Wewill discuss these
two particular cases below: The integral on the rhs of Eq. (4)
reduces to well-known functions.

213/2 —1

Viipp') =

1. Power-law potentials less singular than 1/r

(i) For the potentials ¥(r) = r>"~ ' withn =0,1,2,...,
one has

(2’1)' 1 [n](p2+p'2)’ (5)

Vip,p') = —_
PP 2%nl7 (pp")"

2pp’
with Q!"l(x) = (d"/dx")Q,(x) and Q,(x) a Legendre
function of the second kind (see, for example, Ref, 25).

(ii) For the potentials ¥(r) =r>" with n =0,1,2,...,
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V,(p,p') becomes a distribution expressed in terms of deriva-
tives of delta functions as follows:

2 n
d l—(% 5(p—p").

dp*

(iii) For the potentials ¥(r) =r%,8> — 1, where Bis
not an integer, the kernel can be expressed in terms of a
generalized Legendre function of second order as in Eq. (5)
by replacing n by (8 + 1)/2, which is not necessarily an
integer.

Notice that for all these potentials the kernels V,{p,p’)
are singular when p - p’. The singularity goes from logarith-
mic In|p — p’| for the Coulomb potential ¥(r} - 1/r to more
singular parts, for example, 1/(p — p’)? for the linear poten-
tial ¥(r) = r or to delta function behavior, as in case (ii).

Knowing these singularities is important in the numeri-
cal calculations since one can integrate them out explicitly,
leading to a rapid convergence of the numerical methods
used: For this see the description of the Multhopp technique
given in Sec. II D.

Viipp') =

2. Power-law potentials more singular than 1/r

Attractive potentials more singular than 1/ cause prob-
lems in bound-state equations and the eigenvalues are not
always defined. Let us recall that with nonrelativistc kine-
matics, A = pz, the Hamiltonian is bounded from below if the
potential is not more singular than ( — 1/4/*). We must also
point out the remarkable analysis of Herbst,”® who has
shown that the relativistic Coulomb Hamiltonian
H = (p*> + m*)"'* — A /ris bounded from below if and only
ifA<2/m.

However, combinations of these potentials can have a
well-defined spectrum if a repulsive part dominates at small
distances, at least in the nonrelativistic case. Exact solutions
are known in this case,?” and are also of particular interest in
some physical problems (see, for example, a long discussion
in Ref. 28). Therefore, it is also useful to know the kernels
V,(p,p") for these singular potentials.

(i) From Eq. (4), the following formula can be easily
written for the potentials ¥(r) = 1/r>"*' with n0 (not
necessarily an integer):

(=)mid —nm)! (P> —p')™" [n](P2 +P'2)
T2m)!(I+n)!  2pp')" 2pp’

We remark that the kernels ¥, (p,p’) have no singularity
when p—p'.

(ii) However, the formula in (i) presents some prob-
lems. For example, when applied to the potential 1/7 7, we
see that the /= 0 kernel is not defined. Similarly, for the
potential 1/7 >, the / = 0 and / = 1 kernels are not defined,
etc. This problem comes from the definition of the gamma
functions as mentioned above.

We can show as an example a regularization of the ker-
nel V,(p,p') for 1/r>. For this, let us calculate ¥, (p,p') for
the following potential:

Vi =72k [(r/r)> Y+ (r/r)’ €1,

which is a regularization of the potential 1/7* with a fixed
value €. The constant r, fixes a scale for this regularized
potential and we can easily show that

Viipp') =
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Volpp') = (172m)[(p — p') In(rolp — p'|) — (p+0')?

XIn(rolp +2' D1+ [(3 —2y)/7lpp’ + o(€),
where y is Euler’s constant. We notice that the term of order
1/€ that causes the problem of definition of the gamma func-
tions has been canceled by adding the two contributions of
1/ *<and 1/~ Thus the regular part of ¥,(p,p') is the
kernel of the potential lim,_, ¥ ‘(7). This behavior is al-
ways reproduced in any other different regularization of this
singular potential. An application of this behavior is shown
in Ref. 29.

We also notice that the kernel V,(p,p’) for / = 1 has no
problem and is well defined:
(Cd A l p—r l Lo
8mpp’ p+r 4
the same is also true for ¥, (p,p') with /> 1. However, notice
that when regularized, ¥, (p,p') has lost its scaling property
when r— Ar, as expected.

Vilpp') =

3. The Fourier transforms for power-law potentials

Itis also interesting to see that the kernel ¥V, (p,p') can be
easily related to the Fourier transform of the potential ¥ (r)
by

- ﬂ—é— Volpp') =F(p—p') —F(p+p'),
dp
with
2 iqr
~~F(q) =fdr Virye'r.
q

The above formulas allow us to calculate Fourier trans-
forms of potentials once ¥,(p,p’) is known. In Table I we
give some Fourier transforms of the power-law and logarith-
mic potentials. These results generalize those of Ref. 30. No-
tice, also, that for any value of v, one has

d? .
- 'J—z F'(q),
where F*(q) is the Fourier transform of the potential 7.

Fv+2(q)

C. Linear potential: The Vekua~-Magnaradze method

When the most singular part of the potential at infinity
is linear, the very clever method of Vekua and Magnaradze,
described in Ref. 20 and used, e.g., in Ref. 31, gives particu-
larly useful results.

1. The Vekua-Magnaradze method

We shall describe the Vekua-Magnaradze method on a
simple example that can be easily generalized.

In what follows, we shall manipulate principal value in-
tegrals that we denote with the symbol  We recall that

()t el
x 2lx—ie x + ie

1 1
(F) Sl =+ ie)z]'
We also recall that if @(x) is regular on xe€[a,b] and if
@(a) = @(b) =0, then
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TABLE I. Fourier transforms of power-law potentials. Here 7, is the pa-
rameter chosen for the regularization of 1/7* and 1/7° and ¥ is the Euler
constant.

Potential V(r) Fourier transform F(q)

r — @2 /7T + /2]
/T(—v/2)}q| ~2~"sgn(g)
v#£0,2,4,...
v# —3,-—5,
ru (_)k5(2k+l)(q)
k=0,1,2,...
(l/rS)rcsularfzalfon (Q/‘ﬂ') [ln|r0qi — 14 7’]
(l/rS)regulanzauon _ (q3/617') [lnlroql —_— 161 + y]
Inr §()In(2/y) + sgn(g)/¢*
b b b ’
d [ eWdy _ J(' e(y)dy =JC o'Wy 6
dx Jo y—x e —x)* )i y—x '’
where ¢ '(y) = do(y)/dy.
Consider the one-dimensional eigenvalue problem

(K (") + 1) flx) = Ef(x), (N
where 7 = |x| and K(p?) is a kinetic energy operator, for
example, K = p*/2m, K = (p* + m?)"/?, or any intermedi-
ate form depending on p? = — d?/dx’. The normalization
conditions on fimplies

+ =

Sx)dx =12+ ) =f(— ) =0. (8)

— oc

If we Fourier transform Eq. (7) and define
A(p*) =K(p*) — E,
we obtain the singular integral equation

1d +°"f(q7)dq 1 (77 f(9dg

TJow q—p
(9

Equation (9) can be inverted by standard techniques,?® giv-
ing
+ oo 2
) =lJ[ AGRD 4,
TJ-w §—p
The Vekua-Magnaradze trick consists in isolating the
singular part of (10) as

+ oo
rp= -4 L B0+ 5o
where the regular part g(p)is

+ oo
g(p)=f R(p,q)f(q)dg, R=%

AP f(p) =

(10)

() —4P*)

(g—p)
(1

After some simple manipulations and making use of the
initial equation (9), one obtains

1 d( )
_ | —— G(p), 12
4 dp f(p) +f(p) = G(p) (12)
with
1 d/1
Gp)=——(= .
(P) A dp(A g(P)>
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We introduce the variable 7(p) such that dr = A( pHdp,ie.,
P /4
T(p) = f A(p*)dp =f K(p*)dp — Ep.
0 0
Equation (12) is now

d2
= =G,
d2f+f

(13)

which can be regarded as a second-order differential equa-
tion if G is considered given. After some simple manipula-
tions, the general solution is expressed as

f(p) =acos 7(p) + bsin 7(p)

P
+f g(p)cos(t(p) — 7(q))dg,
0

where a and b are arbitrary constants.

We note that 7(p) is odd in p and that if fis even g is odd
and vice versa [see Eq. (11)]. If we impose the boundary
conditions (8), we obtain an integral equation for f [ remem-
ber g is expressed in terms of f through Eq. (11)]:

P
fAp) =f g(q) cos(t(p) — 7(q))dg (14)

and the quantization conditions for even and odd solutions:

Jw g(g)sin 7(g)dg =0 (even), (15a)
0

Jw g(g)cos 7(q)dg =0 (odd), (15b)
0

which are equivalent to f'(0) =0 (even) and f(0) =0
(odd). Referring to Eq. (13) we see that Eqgs. (15) will de-
termine the discrete set of energy eigenvalues {E, }.

The following remarks are in order.

(i) In the case of nonrelativistic kinematics, K = p?, Eq.
(14) is no longer an integral equation, but gives an analytic
expression for f Indeed, in this case we have
R = — (p + q)/7; therefore, g(p) = ap (even) or g=a
(odd), where « is a normalization constant (determined as
an integral over f).

In this case, we have 7(p) = p*/3 — Ep and the quanti-
zation conditions {15) give as energy eigenvalues £ = — ¢,
where €; are the zeros of the Airy function or its derivative,
as is well known.

(ii) More generally we have the following theorem.

Theorem. If the kinetic operator K( p?) is a rational

function in p?, then the eigenvalue problem (7) possesses
analytic solutions.

The proof is straightforward since any rational function
can be decomposed in a finite sum of simple elements. A
polynomial will contribute a sum of separable terms to R
(i.e., terms which factorize in p and q), as will any pole term:
/(@ +a) - (p+q)/[(p*+a*)(¢° +a*)]. Therefore,
the function g entering Eq. (14) will be of the form

N

g(p) = Z ai(P)aH

i=1
where the constants «; are to be determined consistently in
terms of f.
This has obvious consequences. The successive relativis-
tic kinematic corrections can be calculated exactly to any
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given finite order, for example, by truncating the continued
fraction expansion of (p* + m?)'/%

(p2+m2)l/2=m+p2/(2m +P2/(2m+P2
/(2m+ 1)),

which converges uniformly in the entire complex p? plane
aside from the negative real axis [ — m?, — « ].

(iii) Equation (14) can be cast into the form of a Fred-
holm equation:

+ oo
with
p 2y )
H(p,q) = —f cos(t(p) — T(k))(ﬁ(!%z—;_llfm)dk'
h (17

Owing to the asymptotic behavior of f{p) as |p| - + «,
a simple change of the function f(p) = ¢(p)/(p* + A %)7
with a suitable choice of the exponent y renders the kernel of
the Hilbert-Schmitt type. This integral equation is very well
suited for numerical calculations.

Note that the energy E appears as a parameter in the
kernel H, Eq. (16). The spectrum {E,} corresponds to the
discrete set of values of E for which the homogeneous equa-
tion (17) has nontrivial solutions ( f#0).

In the case of relativistic kinematics, one has

(K(p*) — K(g*)) _ (g+p)
(¢—p) N+ mZ + PP+ m?
(iv) One can easily treat problems where the potential

contains regular contributions besides the linear term r. In
such cases, Eq. (9) takes the form

+ ’
APOfp) + v(p) =lf ['(g)dg

where

+ o
’(p) =f V(p.g)f(q)dq

represents these extra contributions.
If we define

+ w
hp) = — iJ vgdg
TJ-w g—p
then all the calculations proceed in the same way, with the
function g(p) replaced by g(p) + A(p), e.g., (14) becomes

/4
Ap) = f (8(g) + h(@)cos(r(p) — 7(q))dg

and a similar (but lengthier) Fredholm equation replaces
Egs. (16) and (17).

2. Three-dimensional problem
Consider now the three-dimensional problem
(V—AT+m’ + (r—E))¥(r)=0 (18)

(any previous form of the kinetic energy operator could be
written).
After partial-wave projection, the Laplacian operator is

S. Boukraa and J. -L.. Basdevant 1063



2
L d®  ld+l)

r dr r
a. swave I=0, In the s wave, we can introduce the opera-
tor

1 d2
O'= ——Z_r4+m?
r dr
If we introduce the reduced wavefunction

u(r) = ry(r), we end with a problem similar to the one-
dimensional case:

[( —zt mz)l/z + (r— E)]u(r) =0,

except that we work on the positive real r axis:
u(0)=u(°°)=0) 'E[01+°°]9 uefé(R),

After Fourier transforming; setting p* = s; working on
the reduced wavefunction u(p), ue.¥3(R), pe[0, ]; and
writing u(s) instead of #(p), we end with

(57— )uo) = 20 L7 L0
0

t—s

which is basically the same equation as in the one-dimen-
sional case and can be treated in the same way; therefore, we
shall not repeat.

Since u(0) = 0, only the odd solutions of the one-di-
mensional problem are relevant, as usual.

b. Higher partial waves. Returning to Eq. (2), we now
have, with the notations of Secs. II A and B,

(2h(p) — Eu (p) + %f dp' 1, (p")
(¢]

2 12
xL o ;(p_+_{’) -0,
pp 2pp
where for brevity, we have the following convention for the
principal value integrals: If f,(p) has a real pole at p,, i.e.,
£i(p) =g,(p)/(p—po) or if f,(p) has a double pole at
P ="Poie, f,(p) = &(p)/(p — po)® then

b b 1
jcfl(p)dp=J P( )gl(p)dp,
a « \p—Ppo

b b 1
7[ fa(p)dp = f P(———z)gz(p)dp-
a a  \(p—po)

In our case, the function Q }((p*> + p'*)/2pp’) has a sin-
gularity at p = p’ of the form 1/(p* — p'*)?, so that the latter
is understood. However, the integrand vanishes at both end-
points (p’' =0 and p’' = + =), so that we are within the
conditions (6). Therefore, this case results in what was dis-
cussed in remark (iv) of Sec. II C 1.

However, for higher partial waves, the Vekua—Magnar-
adze method is more cumbersome to handle in practice than
the Multhopp technique, which will be described below.

3. Analytic approximations

Explicit functions that constitute excellent approxima-
tions to the exact eigenfunctions of the relative Hamiltonian
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H=(p*+m*)"?+r (including the massless case
H = p + r) may be obtained either in configuration or mo-
mentum space. We concentrate mainly on s waves. Once the
s waves are obtained, WK B approximations can be used with
the higher partial waves.*'

a. Configuration space: Constant force. Consider the
one-dimensional eigenvalue problem

(PP +m” + V(x))¢ = Ey,
where

Vix) =x for x>0, V(x)= 4+ o for x<O.

The solutions are given by generalized Fresnel integrals
defined as

Gm(x) =Nf dpcos(T,, (p) + p(x — E,)}), (19)
0

where

/4 2
?m(P)=f am =L @ rm + L argsh £
o 2 2 m

for x>0 and G '{x) =0 for x <0. Here, m stands for the
mass m and n stands for the radial quantum number
(n = 1,2,...). Theeigenvalues E, are determined by the con-
dition G 7’(0) = 0 and N is a normalization factor. This cor-
responds to a constant force for x > 0.

For m = 0 one recovers the Fresnel integral.

In the three-dimensional case, the functions

u,(r)=G6,(r (20)

constitute excellent approximations to the exact s-wave solu-
tions of problem (18). In the limit m — « and under a suit-
able redefinition of the parameter E, one recovers the (ex-
act) Airy functions.

Table II shows the comparison between the exact eigen-
values and those emerging from approximation (19). The
mass scale is chosen in comparison with the eigenvalues of
the massless case.

In Table II we notice that approximately (19) does not
deviate by more than a few percent: The deviation decreases
as the mass increases (in the limit m — o the approximation
becomes exact) and as the radial quantum number in-
creases.

TABLE II. Exact and approximate eigenvalues for the s-wave relativistic
linear potential.

m (dimensionless) n Exact Approximate

0 1 2232 2.171

0 2 3.330 3.316

0 3 4.164 4.156

0 4 4.859 4.854

0 5 5.467 5.463
2 1 2.929 2912
2 2 3.929 3.923
22 1 4.080 4.077
42 1 6.678 6.672
62 1 9.385 9.377
1042 1 14.905 14.896
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These facts can easily be understood if one calculates the
expression

8(r)=Wp +m* +r—E,)u,(r),
with u,, (r) given by (20) and E, the approximate eigenval-

ue. If u, and E, were exact, we would find §(r) =0. A
straightforward calculation shows that one has

&(r) =£f dp cos(7(p) — pE,)
T Jo

% J dk k sin kr
o JEI+m +p+m’

Obviously, the above equation goes to zero as m — co; it
also decreases with the radial quantum number owing to the
oscillations of cos(7(p)} — pE,) and the fact that (p) in-
creases with n.

b. Momentum space. An equivalent approximation can
be obtained from the momentum space analysis performed
in Sec. II C 1. One can either perform a stationary phase
approximation on Egs. (16) and (17) or simply set
g = const in Eq. (14), which is what emerges in the nonrela-
tivistic approximation. The reason for the latter approxima-
tion is that f(p) is peaked around a value p, = {p?)"/?; there-
fore, the integral defining g(p) in Eq. (11) will vary slowly
with p (remember we are only interested in the odd solutions
of the one-dimensional problem).

One can readily verify that under this approximation,

P
Ap)~A f cos((p) — 7(q))da,
0

with A a normalization constant, and that the quantization
condition (15b) reads as

J.w cos(7(p) — pE,)dp =0,
Q

which is identical to the configuration space approximation.

D. The Multhopp technique for solving bound-state
equations

One of the usual methods for finding eigenstates and
eigenfunctions of bound-state equations is the discretization
or colocation method. This means that the continuous vari-
ables are replaced by discrete ones, so that the differential or
integral equations become simple matrix eigenvalue prob-
lems.

One of these very useful methods is the Multhopp tech-
nique. It has been used, for example, in the calculations of
wing theory®' and is very appropriate for singular integral
equations. For a discussion of the notation we have adopted,
see Ref. 22. Here we will discuss only integral equations, but
the generalization to differential equations is straightfor-
ward.

1. Integral equations

Consider the following integral equation:
(H(p) — Eu(p) + f dp’ u(pY¥V(p,p') =0
(4]
and make the change of variables p = htan(8/2) and
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p = htan(g'/2), with A an arbitrary positive constant and
0<8< . The above equation then becomes

u(6Hv(ee')=o,
(21)

v hdb'
H(B) — Eu(b _—
(H(®) Jut )+L 2 cos*(8'/2)

where we have written, for simplicity, u(htan(8/2)) as
u(6),H (htan(6/2))as H(8),and V'{h tan(8/2),h tan(8'/
2))as V(8,0").

If we now expand #(8) on an orthonormal basis in the
interval [0,7], namely, {(2/7)"/?sin i6,i>1} and truncate
the series at a maximal value /,,, = N, we obtain, for the

special values of &: 8, = kn/(N + 1), k= 1,...,N, the fol-
lowing expansion:
N
u(8,) = Z a; sin i6,. (22)

i=1
Replacing Eq. (22) in Eq. (21), we obtain

N
S 4,B(6,) = Eu(6)),

i=1
with
B(i,6,) = H(6,)sin i6,
i hdo' .
+J ——————sinif'V(6,,6").
o 2cos*(8'/2) (6,67
Then from (22), we deduce that
2
a=——
(N+1) £
where we have used the orthonormality condition
2
_— sin /g, sin j6, =§,.
(N+1) kZ'I ST

Finally we end with the following matrix eigenvalue
problem:

S sinjo,u(6,),

N
Z B u(6,) = Eu(6)),
k=1
with
2
z sin i6, B(1,6,)

(N+ 1) f=1
or, explicitly,

ik =

B, =H(6,)0; + l) 2 sin i6,

XJ Lsin 8'V(e.,0’).
o 2cos?(6'/2) J

Thus, the initial problem has been replaced by a simple
matrix eigenvalue problem, which can be now solved nu-
merically. The integrals in B, can be easily evaluated by
standard numerical methods.

This method gives good results for the first low-lying
eigenvalues and eigenfunctions. The accuracy increases with
N. The method that shows that N of the order of 30 already
gives very accurate results appeared in our calculations in
Refs. 8 and 16. Notice, also, that the convergence of the
method depends highly on the choice of the arbitrary con-
stant 4, which must be chosen such that the eigenfunctions
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are well centered around the points {p, = & tan(6,/2),
i=1,...,N}. Thus A must be of the order of the mean value of
p: Any variations of 4 around this value must have no effect
on the first eigenstates.

2. Coupled integral equations

The Multhopp method can also be extended to coupled
integral equations, which will appear later in the three-body
problem. Thus we now consider the two coupled integral
equations

(H11(p) — Eu,(p) + Hy2(p)ur(p)
+ fow ap'[V, (p.p")u,(p") + Via(pp Y, (p')] =0,
Hy (p)u,(p) + (Hyz(p) — Euy(p)
+Lwdp'[V2,(p,p')ul(p’) + Vaapp Y ua(p)] =0,

By making the same calculations as before, but with a{"’ and
a® now defined by u,(8)=3" ,a"sini@ and
u,(0) = =V a!? sin if, we end with the following matrix
eigenvalue problem:

N B!k] B!k2 u,(6,) u,(6;)
Z( 3 j”)( 0 )zE( 6 )
“iI\Bj B/ \uy(6,) u,(6;)

with
5 2 y”

B« =Ha 6. 6 4+ —_— sin i@
s o j) 7 (N+1) = ,

7 hdo' N ,
XJ; 7005 (07/2) sinif'V,;(6,,8"), af=1,.2.
The Multhopp method can be generalized to any set of
coupled equations. Compared to other methods—variation-
al methods,'®!%!® cutting the potential,® and variational
Monte Carlo techniques®—the Multhopp technique is very
efficient with confining potentials whose singularities in the
kernels V(p,p’) can be integrated explicitly.

E. Examples

The Multhopp technique can be easily applied for the
higher waves of the Hamiltonian H = p® + r. This can be
done by first separating the singularity of the kernel
V,(p,p'), which is the same for all waves:

, 1 , 2 + 2
Viipp') = ; Ql(p e )
PP 2pp

4
= — ————— 4 regular part.
(p2 —p 2)2

TABLE III. Eigenvalues of H = p* + r.

TABLE IV. Eigenvaluesof H=p + r.

n =0 =1 =2 =3
1 2.2322 2.9872 3.5912 4.1084
2 3.3300 3.8586 4.3347 4.7676
3 4.1642 4.5835 4.9828 5.3592
4 4.8586 5.2144 5.5651 5.8956
5 5.4670 5.7803 6.091 6.392

The regular part has a divergence that is at most loga-
rithmic and so can be easily evaluated numerically.

We give the eigenvalues for different values of the angu-
lar momentum / and the radial number »n in Table III. For
/=0, the eigenvalues are just zeros of the Airy function
Ai( — x), asseen in Sec. II C. We give the eigenvalues of the
Hamiltonian H = p + r in Table IV. The eigenvalues ob-
tained using a WBK approximation, as given by Martin,*>
are in remarkable agreement with the exact values of Table
IV. The WBK approximation gives

E(nly = [2(1+ DY 422 (n + D/[1A+ 1)]V4

Notice, also, that when / is large, E >~ /, which means that
the Regge trajectories are linear. Thus this Hamiltonian can
be applied as a toy model for bound states of light quarks
(see Ref. 8).

Another interesting potential which can be easily treat-
ed by the Multhoop technique is the logarithmic one,
V(r) = In r: Its kernel is given by

Vi.(pp')

= (In2— P& —p) + 1

1 [ 1
2lip—p| p+/Y
% [pz +02 -7 —p’zf]’,
2pp’
with ¢ Euler’s constant.
The eigenvalues for the nonrelativistic and ultrarelati-
vistic cases are given in Tables V and VL
The Hamiltonian A = p* + In r has many interesting
features and can be applied for bound states made of heavy
quarks (charmonium, bottomium, etc.). Notice that the
splittings between the different eigenvalues remain constant
if we rescale p to p/m'/? and r to rm'/?, where m is a mass
scale. This means that these splittings are independent of the
quark masses. This is indeed what is observed approximately
when the spectrum of the charmonium and bottomium are
compared, i.e., when m goes from the mass of a ¢ quark to
that of a b quark.

TABLE V. Eigenvalues of H = p° + In r.

n =0 =1 =2 1=3 n 1=0 =1 =2 =3

1 2.3381 3.361 4.248 5.050 1 1.0443 1.6531 2.0132 2.286

2 4.0879 4.884 5.629 6.331 2 1.8474 2.1504 2.3869 2.581

3 5.5206 6.207 6.869 7.504 3 2.2897 2.4915 2.6623 2.811

4 6.7867 7.405 8.009 8.596 4 2.5957 2.7456 2.880 2.999

5 7.944 8.514 9.076 9.626 5 2.8299 2.948 3.060 3.159
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TABLE VI. Eigenvaluesof H=p + Inr.

n =0 I=1 =2 =3
1 1.0637 1.7116 2.1058 2.3886
2 1.7581 2.1262 2.4001 2.6163
3 2.1841 2.4294 2.6341 2.8064
4 2.4344 2.6655 2.8269 2.9688
5 2.7159 2.8581 2.9903 3.1100

A real phenomenological model, taking account of all
the elementary particles, is in fact given by a Hamiltonian
lying between H = p + rand H = p’ + In r. A phenomeno-
logical study of a Hamiltonian of the form
H = (p* + m*)'? 4+ V(r) (with m a mass scale) is given in
Ref. 8. The potential F(r) is logarithmic at short distances
and linear at long distances.

{il. THE THREE-BODY PROBLEM

The three-body problem can be treated in a similar man-
ner. Consider the equation

ih(}?i)-k 53‘_’ V(Ir,—rjl)—E}l‘l/)=0. (23)

i=1 i<fj=1
As Sec. I, we assume that the kinematics ZA(p;) is a
function of only the p;’s (magnitude of p;). Furthermore,
the potential X _ ;=1 ¥Y(|r; —1;]) is supposed to be a pair-
wise interaction of the separations 7, = |r, —r;| between
particles (i) and ( j).

A. The three-body problem in momentum space

In the nonrelativistic case, #(p) ~ p?, itis useful to intro-
duce the Jacobi coordinates

3. myr;
Q= l_; T
M= (mmy/mm,)""*(r, —r,),
&= (mym/mM)"2[(myr, + myr,)/my, —15]
and their conjugate momenta

3
w= z Pis

=1
q= (m/(mlmzmlz))'/z[mzp, — mp,],
p= (m/(m3Mm,2))”2[m3(p1 + 1) — mps),
with
3 3 mom.
M= m;, m= i
i;l i<jzzl M

These new coordinates with their conjugate satisfy the
canonical commutation relations and one can easily check
that

m;=m, +mj.

which corresponds to the fact that in the nonrelativistic case,
the center of mass motion can be eliminated since the pair-
wise potential 2, _, V( ;) is a function of only the two co-

f<j
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ordinates m and &, as we will see below. Notice that this
choice of coordinates is not unique and that for each permu-
tation of the three particles, one can define another set of
coordinates related to the others by unitary transformations.

For other kinematics, such as the semirelativistic
h(p) = (p* + m*)'/?, the bound-state equation we consider
is not covariant and one has to impose the center of mass
condition explicitly by fixing Q = 0 in the kinematics.

For our calculation, we suppose from now on that the
three particles have equal masses (m; = m, = m;). This
will simplify the discussion, which, however, remains valid
even when the masses are different. In this case, the Jacobi
coordinates are defined simply by

X _(r—rp)
0_239 1] \/i »

2
£E= \/;[i%m. _ ,-3],

17:21’1’ q= (pl‘/_ipz) ,
21 (pi+p) ]
3[ 2 Ps|

Other independent sets of coordinates can be construct-
ed by cyclic permutations:

and

p=

Q Q) ™ ™

n(k) = TR 1l q® =T ql

g(k) g) p(k) p

where

1 0 0y 1 0 0

T"=|0 1t o) T®=|0 -1 V32|
0 0 1/ 0 —v32 -}
1 0 0

T9=[0 -4 —V3n2
0 V32  —}

are the cyclic permutation matrices. We notice that Q and =
are invariant, as expected.

Then, we can easily see for the potential and kinematics
that

i Viry) = 23: V(2 |T%q|)

i<j=1 i<j=1

and in the center of mass system
3 3 2 .

Shp) =3 h( 5 |T<'>p|)-

i=1 i=1

Concerning the potential one has

|T 0| = |am + B §|

= (a®*n® + B + 20PEncos y )7

where a and B are numbers such that o> + 2 = land ¥, is
the angle between & and 7. Thus | T, M| and, consequently,
the potential are functions of only £, 7 and the angle between

g and m. These three coordinates will be denoted commonly
by R and will be called internal coordinates since they speci-
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fy the shape of the triangle formed by the three particles. The
other three coordinates will be called external and indicate
the orientation of this triangle: They will be chosen as the
three Euler angles needed for going from a reference system
3 to a body-fixed system S.

More precisely, the body-fixed system S'is defined by the
conditions that m is along the z direction and the x and y axes
are defined by imposing that § belongs to the (xz) plane.
This prescription defines completely the three Euler angles
R r = ($r,0r,Br)- These coordinates will be used to sepa-
rate the angular momentum.

In a similar manner, one can introduce internal and ex-
ternal coordinates for the conjugate coordinates p and q. The
kinematics will then be a function of only the internal conju-
gate coordinates denoted by P.

This separation of coordinates was first introduced by
Omnés in the nonrelativistic case for the same reasons® (see,
also, Zickendraht®*). Equation (23) can then be written in
the momentum space as the following integral equation:

(h(P) — E)¥(p,q)
+ f dp'dq Y(p',q)U(p—p.q—q) =0,

with

(24)

1

(2m)°

As in the usual two-body problem, where the potential
and kinematics were radial, here they appear also to be “ra-
dial” in the sense that they have no dependence on the exter-
nal coordinates (i.e., the three Euler angles).

To separate the total angular momentum, one has to
expand the wavefunction ¥ (p,q) on the spherical functions
D (# p) in the form

+J

vy = ¥

M = —J
and also expand the exponential exp( — ip§ — ign) on the
spherical functions &4, (#p) and Dy (Z ). To do
this, it is convenient to introduce the hyperspherical har-
monics.

Ulp,q) = Jdgdn V(R)e~ 5~ iam,

ysMpy g AR ) (25)

B. Hyperspherical coordinates; hyperspherical
harmonics

Let us now describe briefly how to introduce the hyper-
spherical coordinates. The coordinate space generated by §
and v is a six-dimensional space in the three-body problem
case. We then consider six equivalent radial coordinates re-
placing § and %. One of the new coordinates is the radius
R = (£% + 5°)"/2 (also called the hyper-radius) and the five
others are angular coordinates. The different ways for defin-
ing the hyperspherical coordinates result from the different
possible choices of these five angles.

1. Fabre de la Rippelle functions

A usual choice is the following. From § and m, we define
the five angles ¢, § = (6,,4,) and | = (6,,,4,,) by writing
tan ¢ = £ /7, whichmeansthat§ = R cos gand = R sin ¢
and § and 1) define the two directions of § and v in the usual
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three-dimensional space. Thus we have 0<¢< /2, 0<0<,
and 0<¢<27.
The volume element is then given by

d§dn=R*°dR dQ,
with

dQ = cos® ¢ sin® ¢ d¢ sin 6, db, dp, sin 6, df, d¢,,
and the Laplacian

A=A, + A(Q)/R?,

where

R =

iRSi

1
R3 3R JdR
and

A= facotzp L 4L A 4L a

¢ ¢  cos’d °  sing
Here A is the usual angular Laplacian in the three-dimen-
sional space.

The eigenfunctions of the angular Laplacian A(}) are
called the hyperspherical harmonics (HH): They are a gen-
eralization of the usual spherical harmonics of the three-
dimensional space, i.e., they are representations of the group
SO(6). The HH with this choice of coordinates have been
constructed explicitly by Fabre de la Rippelle.**

The HH denoted by """"(£1) obey the relation
A@™™(Q) = — K(K + 4 ™)
and are given by

I:ml,m, (18 e s bply + bl +4
b (Q) = N §"(cos ¢) “(sin @) P

X (cos 28) Y ()Y (#), (26)

where K is the quantum number associated with the angle ¢.
Here (lg,mg) [resp. (l,,,m,, )] are associated with the di-
rection of § (resp. m). Pis a Jacobi polynomial.

The HH are also eigenfunctions of the operators A, A,
and the third projections of these two operators A{* and
A$Y with, respectively, the quantum numbers /, (/; + 1),
[, + 1), and mg, m,. Now Nl,-é'[" is a normalizing factor
given by

IR ARy TS DITG Iy Ay R )

i SO
(n+ lg + 2).()1 + l»,, + 5)-

with
n=(K—-1,—-1)/2,

where K is a positive integer and /, and /, are integers fixed
by the condition K — /, — [, >0. Here m, and m,, are also
integers such that (=l <me<+ 1) and
(—1l,<m,<+1).

The normalization condition for the HH is given by

f ¢;(2m:1 :’m:’( O ) ¢;§é'";’qm,,( Q )dQ

= §KK' s ghily gmsmi gmum

The system of three particles can be coupled as usual to
have a fixed total angular momentum J such that
J=1,+1+1; =1, +1,. A set of eigenfunctions having a
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conserved total angular momentum can be written after se-
parating explicitly the dependence on the three Euler angles
(external coordinates of Sec. IIT A).

2. Simonov functions

Another set of angles has been used by Simonov, Bada-
lyan, and Simonov?* for the case J = 0: It is given by the two
coordinates A4 and A related to § and m by

Acos A= (E2 =)/ (£ +77),
Asin A =26/ (E* + 77), 27

with 0<A4< 1 and 0<A<27. The three other angles can be the
Euler angles & defined previously. However, in the case
J =0, these angles do not appear in the HH since
DyW(R) =1.

The HH in this case are written as follows:

ub(A,A) = [(K+2)/21°] V2% 44 IV
XPRE, 1y, (1 =247,

where K is an even integer and v takes the values — K /2,
—K/2+2,.., +K/2. Pis a Jacobi polynomial.
The HH satisfy as before,

A uy (A1) = — K(K + 4)uy(4,4)

and obey the following normalization:
f uy (A uy (A,A) A dA dA = 555 5.

This particular set of Simonov coordinates has interest-
ing properties since it exhibits naturally the symmetries un-
der permutations, for example, a cyclic permutation of the
three particles is equivalent to A going to A + 2k#7/3, with
k = 1,2,3. We will use this set of coordinates in Sec. III C 5
to reduce the three-body bound-state equations to a set of
coupled equations in one variable: the hyper-radius R (or P,
the corresponding hypermomentum) in the s-wave case
(J=0).

3. Example

A simple example of the application of these new coordi-
nates is the expansion of the pairwise potential 2, _; ¥(r;) in
terms of the HH.?* One can easily show for three identical

particles that

Y Virg) =Y ux(4,A)vk(R),
Kv

i<j

with
2( 27 \\2 2TV
Y(R) = -— — 5[K/27\v|]|:1
vg (R) TT(K-}-Z) (=) +2cos—3
Xfﬂ dé sin ¢ sin[(—-zlS + l)¢] V(\/i R cos %—)
0

(28)
Theterm [1 + 2 cos(27v/3) ] means automatically that for
identical particles, the pairwise potential can be expanded on
only the HH u) (4,4), which has v as a multiple of 3, which
means alsothat 2, _; V(r;) isinvariant under permutation of
the three particles. Notice, also, that for the same reason
there is no term for K = 2 in this expansion since this would
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correspond to v = 1, which is not a multiple of 3. For exam-

ple, the harmonic potential ¥(r) = r# gives only the term
0

vy (R):

3 A =R

i<j
Now, if we consider the linear potential V(r) = r, we
can show from (28) that

Ui (R) = {33 =) K7 2 [ 1 |

K+11l2K+1 2K +3

I ” R,
2K—-1 2K-5
withK=0,12,.,v= — K, — K+ 2,..., + K, and where v
is a multiple of 3. This gives, for example, the following ra-
tios between the different terms vy, (R):[v5/v3|~0.027,
|vg /v | ~0.009, |v3 /05| ~0.004, etc., which means that for
the linear potential, the dominant part of the expansion is
given by the term v} (R). The linear potential is approxi-
mately hyper-radial.

Another interesting expansion is the one that can be
done in momentum space when calculating the general kine-
matics 2}_,h(p,). The expansion is now on the HH
uy (Ap,Ap), with the coordinates A, and 4, defined in mo-
mentum space. Thus we have

3
Z hip;} = Eh;’((P)u;’((AP’AP)'

i=1 Kv
The nonrelativistic kinematics is a particular case (as the
harmonic potential above) where only the term A3 (P) is
different from zero: 3} _ , p? = P*. This expansion is useful
for kinematics that are not very different from the nonrela-
tivistic one, as is the case for the relativistic kinematics
h(p) = (p> + m*)'/%

The linear potential and the semi-relativistic kinematics
are both used for calculating the baryon masses in the poten-
tial models approach (see Ref. 16 and the references there-
in). Nonrelativistic calculations are given in Ref. 35.

C. Separation of angular momentum in momentum
space

As stated previously, in order to calculate the spectrum
and the eigenfunctions for a three-body problem, one has to
first separate the internal and external coordinates and then
integrate out the external coordinates. This is made possible
by the fact that the potential and kinematics are functions of
only the internal coordinates.

1. The HH

First, it is interesting to have the form of the HH in
terms of internal and external coordinates. For this, one has
to first couple the HH defined by Eq. (26) with the Clebsch~
Gordan coefficients to have functions with a definite total
angular momentum J and a fixed third component of the
angular momentum M in the reference system:

O Q) = 3 (el TM YEQ).

mem,

Our conventions are those of Edmonds.>* Using the explicit
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form of ¢5™"™(£1) and after applying the necessary rota-
tions defined in Sec. III A, we can separate explicitly the
external coordinates in the spherical functions &%, (%) as
follows:

+J
S F (0 D (B,

n= —J

¢JMI i) =

The functions " (¢,7) define the HH for a fixed
angular momentum and are related to the functions given by
Zickendraht?*: They are given explicitly by

FY¥ () = NE'NT, , (cos ) 5(sin $)"P e 2,
X (cos 2¢)P" (cos ),

w1thN

No= 10471 (U —mV Uy + my'?

X (2l + 1) (21, + 1)"?{I.nl 0|Jn).

As a special case, let us consider J=0. Since
D% (#) =1, one has
¢(’)<011(Q) — F(I)((”O)(¢ 7/) — NII [ ( . )1(21 + 1)]/2/417_21]

X sin/ 2¢P 13"+ (cos 2¢) P, (cos ¥),

with K =0,2,4,...and / = 0,1,...,.K /2.

By simple unitary transformations, these functions can
be related to the HH of Simonov,>* u} (4,4). However, no-
tice that the symmetries of F3 "% (4,y) under the permuta-

tion of the particles are not obvious, as opposed to the HH of
Simonov.**

" defined as before and

2. The exponential
As in the usual three-dimensional case, the exponential

exp( — ip§ — ign) can be expressed in terms of the HH as
follows:
o J (PR)
=W _ ()3 g K TKE2ZY 0 Q * (Q,),
(2m) [LE] (PR)? ¢1L]( RO (Qp
where [L] stands for all the quantum numbers

(Klemg,l,,m,) or (KJ,M,I I ) and (R, Q) and (P,(2;)
are the hyperspherical coordinates. For a discussion of this,
see Ref. 24.

In terms of external and internal coordinates, we can
write

'e_.'p§~1<m= (2,”.)3 z ann'(P,R)

Jnn'

X{ZQiM(%R)@:L(%p)], (29)
M

where

?—Jn"‘(P,R)

& Jk 2 (PR) 21, +1
KT, (PR)? 47
X {lgnl,01Jn){l,n'l,0|Jn")

XF R (b, v )F 5 ($p,78),

where .% """ (P,R) is expressed only in terms of the internal
coordinates (P,dz,7») = {P} and (R,dx,yx) = {R} and
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generalizes in some sense the Bessel functions to the three-
body problem.

3. The bound-state equations

The expansion of the exponential (29) can be used to
integrate out all the external coordinates in the bound-state
equation (24). Thus for a fixed angular momentum J and a
space-fixed projection M, after expanding the wavefunction
on the spherical functions as in Eq. (25), we end with the
following coupled equations:

(H(P) — E)¥/™M(P)
+J
+ > | dPYORM(P) PP =0,
M= —J

(30)
where the kernels 47" (P P’) can be calculated from the

potential ¥(R) and from the functions .# ”"(P,R) appear-
ing in the expansion of the exponential in Eq. (29),

gJMMI(P,P,) =( 8'772 )2 de V(R)
2J+1 n= —J

Xy.JnM(P’R)anM (P',R)

With the coordinates (R,¢z,¥z ) = {R}, the element of in-
tegration can be written as follows:
dR=R>dR dcos yp cos’ ¢ sin’ ¢rddy.

From Eq. (30), we see that the wavefunctions
Y MOM(PY are coupled by the kernels /¥ (P,P’). By
imposing some further symmetries between the component
YIMIM(PY as parity, we can reduce the (2J + 1) coupled
equations to only (J) or (J + 1) coupled equations.

4. The case J=0

The simplest example is /= 0. In this case, the last
equations reduce to only one equation since J = M = 0; the
kernel is given by

Go0(P,P')
= (8772)2de V(R).F **°(P,R).¥ *“°(P',R),

where 7 (P,P’), the projection of the exponential on the
s wave, can be expressed in terms of Simonov functions as

F°°(P,R)

Z K K + 2 (P R )
X ( PR)2

This will allow us to obtain a set of coupled equations in
one variable, the hyper-radius R (or P), very suitable for
numerical calculations.

For this, consider the internal coordinates
{R} = (R,4,4) (and similarly for P) and define the coeffi-
cients vy (R), A . (P), and f% (P) from the expansion of the
potential V(R}, the kinematics #(P), and the wavefunction
forJ =0, V(P) on the HH:

h(P) =S hi (Pyuk (Apdp),
Kv

{2 Uy (A Ag)u® 1’(A,,,/{,;,)]

V(R) =% vk (Plug (Ag,Ar),
Kv
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Sx(P)
s

WJ:O(P) =2 ulvz(Ap,/{p)~

Kv
One can then easily deduce from Eq. (30) the following
set of coupled equations for fixed values of K, and v,

[KvK 'V |Kov,] [h w(P)fx (P)

(KV)(K'V)
+f dP' fx (P)YWVWgk (P,P')] = Efg (P).
0

The kernels in the integral equations V' X’x. (P,P') are
now given from the coefficients of the potential vy (R) by

V& (PP
— ( _ )(K<.+K')/2(PP!)1/2

xf RdR vy (R)y ,,(PR)Jg.,,(P'R).
0

These kernels are similar to those found in the integral
equations of the two-body problem, with K, =K' a half-
integer related to the angular momentum /by X =/ + 1. The
coefficients [ KvK 'v'|K,v,] are the integrals of three HH’s,
similar to the Clebsch—Gordan coefficients for spherical har-
monics:

[KvK 'v'|Kyvg]
= (87%) JdQ uy (A ug (A ut(4,4).

We remark that the last coupled equations are valid for
arbitrary masses. In the equal mass case, some reductions of
the couplings appear as a result of the symmetries of the
wavefunctions under permutations. For example, the X =0
equation is not coupled with the X = 2 equation. This results
in a fast convergence of the numerical methods used to solve
these equations.

For the nonrelativistic case when
h(P) = (m)*?P%% &°, the coupled equations can be
written after a Bessel transformation in the coordinate space
as follows:

47 Ko+ DKo +3) )
[_dR2+ R: —EYRQR)
+ S KKV K VERFL (R) =0,
(Kv)(K'V)

This set of coupled differential equations is given, for
example, in Ref. 24 for the nonrelativistic problem.

Notice that if now J #0, similar coupled equations can
be written using the same methods, but their number in-
creases rapidly.

Notice, also, that we can consider, instead of the set of
internal  coordinates (R, 4,A) = {R}, another set
(&m,7) = {R} given by Egs. (27) and cos y = En/&.
Then, a Legendre expansion in cos y leads to other integral
equations in the two variables £ and 7.

5. Kernels of the three-body problem

The three-body problem reduces to a set of infinite cou-
pled integral equations which can be solved only approxi-
mately by truncating the set at a fixed number of equations.
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Since the quantum number K is not conserved, there
appear diagonal kernels as V&, , . 1,, (P,P') and non-
diagonal ones as ¥V {&; , ¢, 3,2 (P,P'), K #K'; all have to
be known. For example, the linear potential vy (R) = R
gives results similar to those of Sec. II B 1. We have, for the
diagonal kernels,

, 1 , P>+ p7?
VK+3/2,K+3/2(PvP)=§)'F‘QK+3/2(W)
and for some nondiagonal kernels of particular interest,

, P24+ p?\ I (PP
VK+3/2,3/2(P’P)— PP,Qs/z( 2PP’ ) K7TPP' ’
with, for example,

I,(P,P’) =0,
P2+P12
L(PP’ [ ( )
2( )= 1Q1/2 2PP’
P24 P

o, (E5E)

( )03/, PP’

and

32¢2 [(2 5) (P2+P'2)
L(PP)=—"|9[t*— = rs
a( ) -0 ; Qi PP’

P2+Pl2
- ize(e* - o7}
Qs PP’

where we havesett = P/P".

These kernels possess extra singularities compared to
the two-body problem and must also be taken into account in
the Multhopp technique.

D. Special case: Hyper-radial potentials

We call the hyper-radial potential a potential depending
only on R (the hyper-radius). The only hyper-radial poten-
tial evolving from a three-body pairwise potential is the har-
monic one. In a similar manner, only the nonrelativistic kin-
ematics gives a nonrelativistic hyper-radial kinematics in
momentum space.

Let us now consider the spectrum of hyper-radial poten-
tial as an approximation for some kind of pairwise potential.
Thus we impose that F(R) = V(R) and A(P) = P2

This problem can be easily solved by using the HH of
Fabre de la Rippelle.>* We obtain the following decoupled
equation with a fixed K, which is now a conserved quantum
number:

e (R) + [ (Ko + (Ko + /R ug (R

T4R: K [ (Ko+3)(Ko+3)/ Juk(R)

+ V(R)ui(R) = Eug (R).

The spectrum of the above equation is given in Fig. 1, togeth-
er with the corresponding quantum numbers. In Fig. 2 we
show some degeneracies that occur for the harmonic poten-
tial.

IV. CONCLUSION

We have shown that the inclusion of a semirelativistic
kinematics in a Schrodinger equation can be easily done in a
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FIG. 1. Spectrum of a hyper-radial potential. The degeneracy is shown on
the left of the line. The other quantum numbers are K and /. /, # (7 being the
radial quantum number: 1,2,...).

mathematically well-defined manner: However, its resolu-
tion needs the introduction of new numerical methods.

We have described some of the technical methods we
have used which seem to be the most appropriate for this
kind of problem.

In the two-body problem case, relativistic Schrodinger
equations with confining potentials are well defined as singu-
lar integral equations. We have given the kernels for the
power-law potentials and described efficient numerical
methods (the Vekua-Magnaradze and Multhopp tech-
niques) for solving these equations.

Similarly, the three-body problem needs a special treat-
ment. We have found that the hyperspherical formalism is
very adequate. However, for a general pairwise potential, we
end with a large number of coupled singular integral equa-
tions. The resolution can be done only approximately by
truncating at a certain order; this gives accurate results with
a few number of equations for some “almost hyper-radial”
potentials such as the linear one.

E K=13 K=3 K=3
3+ 18 10 28
K=0.2 K=2 K=2
2+ 3 3 15
K=1

1r 6

K:O
ot 1

;1 ' L S SN
1=0 FES] =2 323

FIG. 2. Spectrum of a harmonic potential. The degeneracy is shown on the
left of the solid line.
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All these techniques have been applied in the potential
models’ approach to elementary particles.®'®

ACKNOWLEDGMENTS

We thank A. O. Barut, A. Martin, and J. M. Richard for
their interest and enlightening discussions.

'A. de Rujula, H. Georgi, and S. Glashow, Phys. Rev. D 12, 147 (1975).

2J. L. Richardson, Phys. Lett. B 82, 272 (1979).

*W. Buchmiiller and S.-H. H. Tye, Phys. Rev. D 24, 132 (1981).

“E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T. M.
Yan, Phys. Rev. Lett. 34, 369 (1975); E. Eichten, K. Gottfried, T. Kino-
shita, K. D. Lane, and T. M. Yan, Phys. Rev. D 17, 3090 (1978); 21, 203
(1980).

*A. Martin, Phys. Lett. B 100, 511 (1981).

SH. Grosse and A. Martin, Phys. Rep. 60, 341 (1980).

’C. Quigg and J. L. Rosner, Phys. Rep. 56, 167 (1979).

8. L. Basdevant and S. Boukraa, Z. Phys. C 28, 413 (1985); Ann. Phys. 10,
475 (1975).

°J. Carlson, J. Kogut, and V. R. Pandharipande, Phys. Rev. D 27, 233
(1983); 28, 2807 (1983).

'9D. P. Stanley and D. Robson, Phys. Rev. D 21, 3180 (1980).

'"M. Bander, B. Klima, U. Maor, and M. Silvermann, Phys. Lett. B 134,
258 (1984).

12S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).

Y. R. Kwon and F. Tabakin, Phys. Rev. C 18,932 (1978); R. H. Landau,
ibid. 27,2191 (1987).

“D. Eyreand J. P. Vary, Phys. Rev. D 34, 3467 (1986);J. R. Spence and J.
P. Vary, ibid. 35, 2191 (1987).

'5B. Durand, and L. Durand, Phys. Rev. D 28, 396(1983); L. Durand, ibid.
32, 1257 (1985); L. J. Nickisch, L. Durand, and B. Durand, ibid. 30, 660
(1984).

153, L. Basdevant and S. Boukraa, Z. Phys. C 30, 103 (1986).

'7J. M. Richard and P. Taxil, Phys. Lett. B 128, 453 (1983).

'¥J. M. Richard, Phys. Lett. B 100, 515 (1982).

'9J. M. Richard and P. Taxil, Ann. Phys. 150, 267 (1983).

*N. I. Muskhelishvili, Singular Integral Equations (Noordhoff, Groning-
en, Holland, 1953).

2'A. Robinson and J. A. Laurmann, Wing Theory (Cambridge U.P., Cam-
bridge, 1958); K. Karamchetti, Principles of Ideal Fluid Dynamics (New
York, 1966).

2A. J. Hanson, R. D. Peccei, and M. K. Prasad, Nucl. Phys. B 121, 477
(1977).

2R. L. Omnés, Phys. Rev. 134, B 1358 (1964).

L. M. Delves, Nucl. Phys. 9, 391 (1959); Nucl. Phys. 20, 275 (1960); W.
Zickendraht, Ann. Phys. 35, 18 (1965); Yu. A. Simonov. Sov. J. Nucl.
Phys. 3, 461 (1966); A. M. Badalyan and Yu. A. Simonov, ibid. 3, 755
(1966); J. L. Ballot and M. Fabre de la Rippelle, Ann. Phys. 127, 62
(1980); M. Fabre de la Rippelle, preprint WIS 80/11; R. I. Dzhibuti, N.
B. Drupennikova, and V. Yu. Tomchinsky, Sov. J. Nucl. Phys. 23, 285
(1976).

**M. Abramowitz and L. A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1972).

261. Herbst, Commun. Math. Phys. §3, 285 (1977).

27A. O. Barut, Lett. Math. Phys. 10, 195 (1985).

W. M. Frank, D. J. Land, and R. M. Spector, Rev. Mod. Phys. 43, 36
(1971) and references therein.

*A. O. Barut and S. Boukraa, Hadron. J. (to be published); A. O. Barut
and A. Hacinliyan, Lett. Nuovo Cimento 123, 1053 (1980).

*W. D. Heiss and G. M. Welke, J. Math. Phys. 27, 936 (1986).

*'J. L. Basdevant and G. Preparata, unpublished manuscript.

32T. W. Chiu, J. Phys. A 19, 2537 (1986).

*3A. Martin, Z. Phys. C 32, 359 (1986).

“A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton
U.P., Princeton, NJ, 1960).

*3A. M. Badalyan, Phys. Lett. B 199, 267 (1987); M. Fabre de la Rippelle,
ibid. 205, 97 (1988).

S. Boukraa and J. -L. Basdevant 1072
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For a large class of purely metric, metric—affine, and purely affine theories of gravitation with
nonlinear Lagrangians, it is proved that the theory is equivalent to the standard Einstein
theory of gravitation interacting with additional matter fields.

I. INTRODUCTION

Recently, a lot of interest has been devoted to “general-
izations of general relativity.”” Many authors consider theo-
ries with Lagrangians depending on the curvature in a non-
linear way.' The dynamical structure of such a theory is
usually very complicated (e.g., fourth-order differential
equations for the metric tensor). Especially obscure is the
Cauchy problem, the description of the canonical structure,
definition and positivity of energy, etc. In the present paper
we prove that many of these generalized theories are equiva-
lent to the standard Einstein theory of gravitation, interact-
ing with additional matter fields. More precisely, for a theo-
ry derived from a Lagrangian depending on the Ricci tensor
it is possible (under some regularity conditions) to define a
new metric tensor and new matter fields in such a way that
the field equations rewritten in terms of new quantities can
be derived from the standard linear Einstein—Hilbert La-
grangian. Usually, such a transformation leads to consider-
able simplification of a theory (the number of independent
fields or the differential degree of equations decreases). The
mathematical analysis of the original theory based on our
transformation is relatively easy because we have in general
relativity a lot of standard techniques for studying the
Cauchy problem, the problem of stability of the theory, etc.
For example, the energy of the entire system is composed of
the gravitational energy of the new metric (which—as we
know—is positive) and the matter energy. To check the sta-
bility of the evolution it is, therefore, sufficient to check the
algebraic properties (e.g., positivity) of the energy-momen-
tum tensor of the new matter fields.

We use the following notation for the Ricci tensor of a
connection I':

R,uv(jlr) = Fy./lwl —-T A

no Av

+ I'\g/l/1 Fuov -Tr A o

o vliu a-
(1.1)
Here, for a field of a geometric object /', we denote by j! f the
first jet of f (the value of fand its derivatives). Whenever
(f?®) is a coordinate representation of the field f then
(f% f*,) is the coordinate representation of j' f, where we
denote f%,: =4, f* (e.g., T',*,,:=4,T,*). The covar-
iant derivative with respect to " will be denoted by D.
The main result of the paper is contained in Sec. IV. The
principal mathematical tool that we use is the appropriate
analysis® of a general affine theory, contained in Sec. II.
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Il. AFFINE THEORY

We consider an affine theory based on a symmetric con-
nection I',,*, and a matter field ¢ = (#%). We assume that
the Lagrangian L of the theory depends on the curvature via
the Ricci tensor only:

L(/'T,j'¢) =L,(R,,(j'T),T,'¢). (2.1)

(The more general case® leads to weaker results.) From the
point of view of field dynamics, nonsymmetric connections
do not introduce new phenomena; indeed, the torsion can
always be incorporated in ¢ as an additional matter field.*
Introduce momenta canonically conjugate to both I and ¢:

JdL
= 2.2
i ar. i, (2.2)
JdL
7= . 2.3
P a¢50 (2.3)

The derivative (2.2) is not uniquely defined unless we as-
sume the symmetry #*,*” = 7*;*? corresponding to the
symmetry of I'. The momentum 7 is a tensor density. The
character of the momentum p depends on the character of
the matter field ¢. For a tensorial matter field ¢ the momen-
tum p is a tensor density, too. The Euler-Lagrange equations
of the theory,

L _o, (2.4)
8T,%,
:;; —0, (2.5)
can be rewritten®” as
o adL,
Do T/"u,{ - F s (2.6)
u v
JL
c?gpg"=£’;, (2.7

where the momenta on the left-hand side are defined by
(2.2) and (2.3). Introduce the symmetric and the antisym-
metric part of the Ricci tensor:

K,uv = R(uv) = %(Ryv + Rvp )9
PﬂV = R[uVl = é(Ruv - RVH )
Similarly, we split JL,/dR,,,

(2.8)
(2.9)
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dL,

v _ (;lV):= R 2.10

4 oK, ( )
JL

T,u|'=7.[,ltV]:=_____i_, (211)
P,

5%
where the convention for the derivatives of the Lagrangian is
given by the formula:

dL, =p"dK,, +"dP,, + .
Due to (2.1), (2.2), (2.10), and (2.11) we have
17,4;/1 vo _ paﬁ aKaﬁ 1_¢1B aPaB

81“”’1‘,,, c?l"#‘w,

=8,7p"" — 8, ¥p»7 — 5, 1. (2.12)
The symmetric connection I' splits into two independent
geometric objects®:

rA, =3 +1,'a, +1,%,, (2.13)

where 2,*, is a symmetric, projective connection
(2,%, =0), ie., a connection in the projective bundle
P(TM) and a,: = r, ‘“ is a connection in the bundle of
scalar densities. We have thus a theory of three independent
fields; 2, a, and ¢. The curvature R can be expressed in terms
of the first jets of 2 and a:

Kl“’ = 8‘72#01’ - %a(uw - E,u/lazva}.
+ %Ey/{val + %apavy (2.14)
vazé(avy _ayv)' (2.15)

Observe that P, is the curvature of a. We define the mo-
menta conjugate to 2 and a:

IL
p oo = , (2.16)
gro, = 9L (2.17)
oa,,,

equal to the traceless part (17’I 277 =0) and the trace
(£ =3m*,*") of 7. Decomposition (2.13) of configura-
tions implies the decomposition of momenta:

T = 4 8, HEVS (2.18)
The formulas (2.18) and (2.12) imply

7L = 8,7 — 28, ¥p”°, (2.19)

Env— 3 (2.20)

We see that the entire information about 7 is contained in p.
The Euler-Lagrange equation (2.4) splits into two
equations:
6L 0 6L
83,4, ba,
[the decomposition of (2.4) into its traceless part and its
trace]. Because of (2.18), (2.19), and (2.20), Eq. (2.6)—

equivalent to (2.4)-—can be rewritten as

=0 (2.21)

aL
D, p* — 138, “D,p"° = aT:— , (2.22)
w v
IL
=D, — D, p == (2.23)
7}

Now following the method introduced in Refs. 2 and 7 we
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perform the complete Legendre transformation between 2
and 7. We define the new Lagrangian 1t by the formula:

W= —3d,(,*7:°) +L, = —3,(2,°p") + L,.
(2.24)
To perform the Legendre transformation we have to express
2, 4 and its derivatives in terms of 7#, *” and its derivatives
(i.e., in terms of p*” and its derivatives). Standard argu-
ments show that Egs. (2.5) and (2.21) are equivalent to

su -0, su -0, su -0

54° S ba,
Due to (2.24) and (2.14) we see that the only derivatives of
2 that are involved in the definition of 1l are those equal to
the “divergence” d, 2,7, . It is therefore sufficient to express
3,% and K, interms of a,P, j'$, and j' p. For this purpose
we solve 36 + 10 algebraic equations (2.22) and (2.10) for
36 + 10 variables ¥ and K contained in L ,. We assume that
these equations can be solved uniquely (without this regular-
ity condition we would obtain a theory with additional con-
straints>®). However, formulas (2.22) and (2.24) imply
that only the traceless part of p*; = d,p"" is involved. We
denote by j'p the traceless part of j'p. We conclude that our

theory enables us to define functions &, 4 and & .. Such that
3.4 =8, (P)pa.j'9), (2.26)
K, =8, (Pjpaj'¢) (2.27)

are solutions of (2.22) and (g. 10). Hence, the Lagrangian U
can be expressed in terms of j'p, j'@, and j'¢. Due to (2.24),
(2.14), (2.26), and (2.27) we have

U= _Pﬂv(‘@yv + %a;tv + @yla@vai - %@yivai
—Aeq,.a,) —p;€,% + L, (!PCa,j'd).

(2.25)

(2.28)
The Euler-Lagrange equation,
ou _ (2.29)
&
can be replaced by the definition of the momentum
Ju ~
A,, = — =@ AV(P9 il » j! ) (230)
o o jpa,jé

canonically conjugate to p** and the dynamical equation
(2.14) with K and Z being replaced by & and &. The deriva-
tive (2.30) is traceless since Ul does not depend on the trace
of p*, . Equation (2.29) together with the definition (2.30)
is equivalent to Egs. (2.26) and (2.27), i.e., to (2.22) and
(2.10).

The Lagrangian U is coordinate dependent, as in the
case of the first-order Einstein Lagrangian. We will show
later [see Eq. (2.32) Jthat adding a complete divergence to
(2.28) we can obtain an invariant Lagrangian of the second
differential order in p**. For this purpose we introduce a new
symmetric connection{,*,}, and the corresponding covar-
iant derivative V, such that

V.0 =0. (2.31)

The above formula defines uniquely {,,,} in terms of the
first jet of p provided det (p*”) %0, which we have to assume.
We define our invariant Lagrangian { by the formula:
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L=1u+3, ({43757 + 19, (a0, (2.32)

where by a, we denote the covector @, =, —{,",}. To
produce an invariant quantity it is sufficient to use only the
first divergence in the above formula. The last term is an
invariant scalar density and has been added only for conven-
ience (this way we cancel the term p**c,,, in Ul that contains
the symmetric part of 2, ). Finally £ depends on the deriva-
tives of @ via P only. The price we pay for it is the dependence
of £ on the entire set of derivatives of p( j'p instead of j'p).
The numerical value of € can be calculated using (2.24):

=3, [{LAY =T, )] +9,(a.p") + L.
(2.33)

This proves the invariance of the Lagrangian £ depending on
the second derivatives of p**. Easy calculations lead to the
following result:

2= p"K,,, (/°0) + Luae (P, ', j'$), (2.34)
where by K, ( J*p) we denote the Ricci tensor (which is a
priori symmetric) of the connection {,*,}. The “matter La-
grangian” ¥, is given by the formula:

2mat = _pﬂv[‘@’uv + ®paa®va}. - @uiva/l]

T L,(8P8,a,j'9). (2.35)

We introduced the symmetric tensor valued function
6.4 =8, (P j'pa, j'9):
8,4 :=6,% +3¥.,.%a, —{ .} (2.36)

We observe that numerically ,%, =T,*, —{,*} is the
nonmetricity of I'. The assumption det(p*") 0 allows us to
define the new “metric tensor” 4, and the inverse tensor
A by the following formula:

pPri= — (1/2x)y —dethz h*, (2.37)

where « = 87 G is the gravitational constant. We see that
(2.31) is equivalent to V,A,, =0, so that {,* } are the
Christoffel symbols of 4. The first term in (2.34) is the scalar
curvature of the new metric. Observe that the expression
(2.15) for P,, remains valid if we replace a,, by a,, since the
curl of {;*,} =43, (In\/ — det k.5 ) vanishes. Finally, we
can choose “the metric” 4,,,, the covector field a,,, and the
original matter field ¢? as independent variables. We see,
that the Lagrangian (2.34) is the Einstein-Hilbert Lagran-
gian with its matter part depending on matter fields a,, and
&%, their first derivatives, the metric 4 ,.v» and its Levi-Civita
connection. Observe that @, is the nonlinear Proca field
since the Lagrangian depends on its derivatives via P,, only.
The Einstein equations of this theory (8L /6h,, = 0) canbe
rewritten as:

K,w(jzh) =8, —V,8,°, +1V,a,

og~u v
+6,",68,7, —6,%4a, (2.38)

and are equivalent to (2.14). Variation of & with respect to
a, gives :

JdL
— 3,7 + (3/10%)/ — det bz h °G,*, = g A
a

M
(2.39)

1075 J. Math. Phys., Vol. 30, No. 5, May 1989

equivalent to (2.23). Variation with respect to ¢ reproduces
Eq. (2.7).

l1l. METRIC-AFFINE THEORY

Now, we consider a metric-affine theory based on a sym-
metric connection I',, *,, a metric tensor g,,, and a Lagran-
gian L depending on the curvature via the Ricci tensor only:

L(j'T,j'8,j'$) = Lya(R,, (J'T)T,78'¢) (3.1

where by ¥ we denote the Christoffel symbols of the metric g.
From the purely mathematical point of view this theory is a
special case of the one discussed in the previous section, with
both g and ¢ treated as “matter fields.” Due to the Legendre
transformation that we described in the previous section we
obtain the equivalence of the above theory with the Einstein
theory for the new metric #,,,, interacting with three “matter
fields”: g,,,, a,, and #°. The matter fields enter into the La-
grangian via their first jets only.

We do not want to discuss the “philosophical” question
of which of the fields, 4 or g, is the “true” metric and which
one is merely an additional matter field. An important argu-
ment for 4 being the true metric is the role of light cones of A
in the causal properties of the Einstein theory based on the
Lagrangian (2.34). Generically, a solution of our field equa-
tions admits singularities, i.e., points where the signature of
the metric becomes nonphysical. The transition between
physical and nonphysical regions of space-time corresponds
to extremal matter densities. Usually, regions which are
nonphysical with respect to the metric g do not coincide with
nonphysical regions for 4. A deep analysis of these phenome-
na could probably help us to decide which metric is more
physical. In most examples, however, regions corresponding
torelatively weak density of matter are equally good for both
gand A.

A special case is the Palatini formulation of general rela-
tivity. Here the Lagrangian (3.1) is linear with respect to the
curvature:

L(/'T,j'j'¢) = — (1/2¢)J — det gg*’K,,, (j'T")

+ Lo (07,8, /') (3.2)
In this case we have
OL
= — (1/2x)y — det gg*”, (3.3)
JK,,
which together with (2.10) and (2.37) implies 4, =g, .

Moreover, the Lagrangian does not depend on derivatives of
the field a, (the field a, can therefore be eliminated alge-
braically’).

Another example is the variational principle proposed
recently by Moffat.® Using our techniques it is possible to
prove that his theory of general nonsymmetric connection
interacting with nonsymmetric metric is equivalent to the
standard Einstein theory of the symmetric metric interact-
ing with a second rank, antisymmetric matter field (see pa-
per by the present authors in Ref. 4).

IV. METRIC THEORY
Consider now a purely metric case:
L(/8.j'$) = Lu(R,, (/8),7.8,J'¢) (4.1)
A. Jakubiec and J. Kijowski 1075



(obviously, R,, = K, ). This theory may be treated as an
affine-metric theory with the Lagrangian,

L(j'T,j'g,j'¢) =Ly(K,,(j'T),Ig,j'¢) (4.2)
and with Lagrangian constraint,
r,* =r". (4.3)

Following the method presented in previous sections,
we perform the Legendre transformation between configu-
ration 2, 4, and the corresponding momentum p** (the new
metric tensor 4, ). Constraint (4.3) implies that the field @,
is not an independent field [@, = d, (Iny —detg)]. We
end up with the theory of the “new metric” 4 and two “mat-
ter fields”: g and ¢. Because of the formula (4.3) the solution
of (2.22) is trivial: €, %, is simply the traceless part of ¥, *, .
Therefore 8,%, (j'4,j'g) = 7v,*, — {,%,}. To express the
new Lagrangian in terms of legal quantities it is therefore
sufficient to solve only ten equations (2.10) in order to find
functions &,,. The invariant Lagrangian £ (2.34) now has
the form:

= — (1/2)y —deth h**K,,, ( *h)
+ Lo (1, j'8,J'8), (4.4)
where
L = (1726} —det B B (R, +6,%,6,7,
—-6,%.8,°,) + Ly (878 /'$). (4.5)
Expressing ® in terms of V . g,,,.:
8.4 =74 — LA =18Y(V,800 + V.80 — Vo8 )
(4.6)
we may rewrite (4.5) as
R = (1/26) — det B h*{R,,,
+ 188" [2V 185, (Voo — VoBua)
+V,.8.0V.861 + V18ap (V08w —29,8,,)]1}
+ Ly (R,7.8,/'). (4.7

Recently, a lot of interest has been devoted to quadratic La-
grangians'

L(/gj'$)
= — (1/2k){ —detg(aR + bR*
+ 88" R, Rp, ) + Lua (J'8,7'9), (4.8)

where R = g“*R,,, . Equation (2.10) together with the defin-
ition (2.37) gives
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J—deth h*
= —detg(ag" + 2bg"R + 2cg™¢"R.,). (4.9)

Solving the above equation with respect to R,,, we obtain
R, (hg)

V —deth «
= - 2 gyv + [gaygﬁvh s
2(4b +¢) 2¢/ —detg
b
Baph© ] . 4.10
4 +c b+ ¢ SrwBes ( )

Inserting (4.10) into (4.7) we obtain

1 [ ] o
Smat = E,; —deth h I“g ﬂg/1 [Zvﬂ.gﬁv (Vag,uo - Vagua )

+ V;zgaavvgﬂ/l + v/{gafj’ (va'g;tv - 2vvg,ua ) ]

‘{ Ty
deth h*g,,
2K 2(4b+c) 8n
—deth

4¢cy) —det g

- h,uv v 2]] Lmat ! ) j! .
4b+c( 8.0+ (j&Jj®)

The first (*“‘kinetic’’) term of the above Lagrangian is univer-
sal and does not depend on the particular choice of the origi-
nal Lagrangian L,,. The second (*“Higgs”) term uniquely
depends on the particular choice of field dynamics.

—detg

[h “ah g,uvgaﬁ

(4.11)
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For a large class of theories of gravitation with nonsymmetric connection, based on general
nonlinear Lagrangians, it is proved that the theory is equivalent to the standard Einstein
theory of gravitation interacting with additional matter fields.

I. INTRODUCTION

In the previous papers' we proved that theories of gravi-
tation based on nonlinear Lagrangians depending on the
Ricci tensor are essentially equivalent to the standard Ein-
stein theory. All the effects due to nonlinear Lagrangians can
be implemented by introducing additional matter fields.
More precisely: to a collection of fields of a theory with a
nonlinear Lagrangian L we are able to assign a new metric
tensor and new matter fields in such a way that they satisfy
equations of Einstein theory if and only if the original fields
satisfy the Euler—Lagrange equations derived from the origi-
nal Lagrangian L. The above result was proved for metric,
metric-affine, and purely affine theories with a symmetric
connection. In the present paper we show that this result can
be easily extended to the case of nonsymmetric connections.
As a simple example we prove that Moffat’s theory® with
both nonsymmetric metric and connection is equivalent to
the Einstein theory of a symmetric metric tensor interacting
with two additional matter fields. This is a mathematical
result and does not depend on the physical (or philosophi-
cal) interpretation of the variables (e.g., the problem of
whether the metric tensor we introduce is the *“‘true” metric
or not). The relevance of such a result consists in the fact,
that it enables us to analyze the dynamical content of the
theory (Cauchy problem, energy positivity, stability, etc.)
using standard tools (results concerning the Cauchy prob-
lem for non-Einsteinian theories are usually extremely diffi-
cult and give very weak results of the Cauchy-Kowalewska

type’.

Il. LAGRANGIAN THEORY OF NONSYMMETRIC
CONNECTION

We begin with a purely affine theory based on a general
(nonsymmetric) connectionI'. Itis known* that the connec-
tion splits uniquely into the three independent geometric ob-
jects:

LA =T +A% +16,4(4, —T,°), (H
where T is a symmetric connection (in holonomic coordi-
nates: I',*, =T,%,), A is a skew-symmetric, traceless ten-
sorfield (A%, + A%, =0,A,%;, =0),and4,:=T,% isa
connection in the bundle of scalar densities over space-time.
We use the following notation for the curvature tensor R of
the connection I':
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R,%.,(J'T)

=I—ﬂ#/la‘,__r/1 _+_Iﬂ/1ra

tu vo —a viu o

~LALS. @)
Here for a field of geometric objects / we denote by ;' f the
first jet of f (the value of fand its derivatives). Whenever
(f®) is a coordinate representation of the field f then
(f%, %) is the coordinate representation of j' £, where we
denote f°,: =4, f* (e.g, T, *,,: =3,[,%).

We consider the following three independent traces of
the curvature:

K, =R, =iR" +R*), (3)
Fyv = R/{ Ayv s (4)
P, =2R, —{F, =R"% —R%, —IF,, . (5)
We consider an affine theory based on an affine connection

T,”, and a matter field ¢ = (¢*). Moreover, we assume

that the theory is based on a Lagrangian L depending on
derivatives of the connection via the above traces of the cur-
vature only:

L(/'T,j'$) =L,(K,, (j'T),P,, (j'T),F,. (j'T)L,j'¢).

(6)

It is easy to calculate that
K, (J'T) =K, (j'T)+4,*A,7%,, (7
F.(jT)=4, —A4,, (8)
P, (j/TY=P,(j'T)+2D;A,%, 9

where by K., (P,,) we denote the symmetric (skew-sym-
metric) part of the Ricci tensor of the symmetric connection
T:
K. =R, =%(Ru/1/1v +Rv'{/1#) g (10)
P, =R, =R — R =T, — T4,
(11)
and by D we denote the covariant derivative with respect to
the symmetric connection I.

From the point of view of field dynamics, nonsymmetric
connections do not introduce new phenomena; indeed, the
torsion can always be incorporated into ¢ as an additional
matter field. This way our theory can be treated as an affine
theory based on the symmetric connection I',, 4, interacting
with the following “matter fields”: A,*,, 4,,, and ¢". Fol-

uov
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lowing our method' we use the following notation for ca-
nonical momenta:

JL JL
vep = A T 12
=P =K, T K, (12
T = = IL, = IL, (13)
P, P,
3L
a}“vza)[#v];z———,‘, (14)
dF,,
JL
= ) (15)
Ps 367
and for currents of the theory:
. v»_ OL u v dL
.]“/l arﬂiv A aA‘u'{v,
JL IL (16)
rt = » P ="
04, ¢

The above formulas do not define uniquely our currents un-
less we impose the symmetries corresponding to the symme-
tries of I" and A. The currents j, d, and r are tensor densities.
The character of the momentum p depends on the character
of the matter field ¢. For a tensorial matter field ¢, the mo-
mentum p is a tensor density, too.

The Euler-Lagrange equation SL/8I" = O has the form

Do + 38, 49,77 = 48, %, 77 4 T =377, 48,7
(17)

The Euler-Lagrange equations for “matter” fields A, 4, and
¢ can be written as

D, +136,%9,77 = — A, pM 7+ 4d*,)Y,  (18)
which is equivalent to L/8A = 0 and
aaa)“a= _._%rr‘" aopBo=pB » (19)

which is equivalent to §L./64 = 0 and SL/8¢ = 0, respec-
tively.

lil. METRIC THEORY AS A RESULT OF LEGENDRE
TRANSFORMATION

Now we perform the complete Legendre transforma-
tion' between p and the traceless part = of I' (2,
=T,* —1,'T,%, —18,°T,,). Numerically, the trans-
formation consists in subtracting the term d,(2,7%,p*")
from the Lagrangian. Then both X, 4 and its derivatives
have to be calculated in terms of p**, its derivatives and the
fields that were not involved into the transformation. As a
result of such an operation we obtain a noninvariant Lagran-
gian that can be improved by adding a complete diver-
gence.'” Such an improved, second-order (in p**) Lagran-
gian is already an invariant scalar density. Following the
ideas of the purely affine theories of gravitation® we inter-
prete g as a dynamically defined metric tensor. More precise-
ly, we define a new metric tensor A v and the inverse (con-
travariant) tensor A*¥ by the formula

P =:—(1/2¢){ —deth,zh"", (20)

where k = 877G is the gravitational constant. The definition
is meaningful if we impose an additional assumption that
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det( — p**) #0. We denote by {,*,} the Christoffel sym-
bols of the metric # and by V the corresponding covariant
derivative. After the Legendre transformation, our theory
may be treated as a metric theory based on the metric tensor
# coupled to the following matter fields: A,4,4, and a, where
the covector fielda,: =T';*, — {;%,} describes the nonme-
tricity of the trace of I". It was proved' that the new Lagran-
gian of the theory is equal numerically to the following
expression:

L=, [({, A} =T "] + 3, (e +L, . (21)
Dueto (11) we have
P,uv = %(av,u - ay.v) . (22)

In order to eliminate the first jet of = from the right-hand
side of (21) we have to solve Eqs. (12) and the traceless part
of (17) with respect to K,,, and =,%,. Let us denote this
solutions by & ,, and &, 4, respectively. The formula (7)
implies

K., =8,.('hj'ajAj'4,j'¢) — 8,%A.°%, . (23)
Due to the definitions of £,*, and a,, we have
LA =€ ' j'a,/'A ' 4,]'8) + 38, a.,
+ 164,71 +18,2(,.}. (24)
We introduce the following tensor-valued function:
®,% = 6,4 (/' j'a,j'A,j'4,j'$)
:=8,% (/'hj'a,j'A, j'4, j'$)
+304 ey +16,40°}
+8.4% - {4 (25)

Formula (24) implies that numerically ©,*, =T, %,
—{,%,} is the nonmetricity of I'.

Observe that derivatives of @, and A%, enter into the
original Lagrangian via P, only. Rewriting formula (9) in
terms of the new covariant derivative V and using (22) and
(25) we have

P, =i{a, —a,)+2D;A"%,
- ayv) + 2(v/1 A‘uiv - @ij/IAa/lv
- 6,74, +a0,4,%,). (26)
It is convenient to code information carried by the tensor
A,*, and the covector a,, into a single tensor field:

B, :=2A"% +1(6,%, —6,%a,). (27)
We see that derivatives of B enter into the theory via the
following skew-symmetric tensor field only:

B, := VAB“’IV .

Now formula (26) can be rewritten as
Py.v = B;tv - @},ua/lBaAv - @vaiByia + %BUU/IB;;;LV .
(29)
We have therefore &, =&, (;'4B,F,BA,j'¢) and
%, =6, (j'hBF,BA,j'¢$). It was proved' that the
new invariant Lagrangian 2 given by (21) is the Einstein—

Hilbert Lagrangian of the metric 4 with the matter part de-
pending on matter fields 4, B, and ¢:

=}(a,

(28)
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f= — (1/2k)y = det bz h**K,, (h)

+ L. (/'A,BF.BA, j'$), (30)
where
Lar = (1/26)y/ = det bz h*[R,, — A, %A,
+6,%4,6,% —6,%4a,]
+L,(]PF,0,B.4,)'¢) . (31)

Here a and A denote the trace and the traceless part of B. The
quantities P and F are given by (29) and (8), respectively.
The function & is defined by (25). We stress that the con-
struction of the quantity B was possible only after the first
Legendre transformation. To the traceless part A of the tor-
sion we add a part of its trace represented by the covectora,, .
However, the definition of @, depends on the metric tensor
h,,.. The transformation from the initial variables I" and ¢ to
the new variables k4, 4, B, ¢ is not a “point transformation”
but is a canonical transformation. This way we have shown
that the theory with the affine Lagrangian (6) is equivalent
to the Einstein theory based on the Einstein-Hilbert Lagran-
gian (30).

However, it is possible to simplify further the theory
reducing the number of independent matter fields. For this
purpose we perform the Legendre transformation between
the configuration B, #_and the momentum 7#*. This way we
replace a 24-component matter field B by a 6-component
field 7. The transformation consists in subtracting the term
V. (#B,*,) =3d,("B,",) from the Lagrangian and cal-
culating (B,*,, V, B,*,) in terms of (V,7",7*"). We use
for this purpose the equation

9% =7, (32)
JdB,,
equivalent to (13) and the Euler-Lagrange equation
ag
=V, ™, (33)
o8, "

equivalent to (18) and the trace of (17). Finally we obtain
Einstein theory of the metric 4 interacting with the following
matter fields: 7, 4, ¢. The field equations of the theory can be
derived from the Einstein—Hilbert Lagrangian with the fol-
lowing matter-Lagrangian part:

L e = (1/26)y] —det h g h*"[&,, — }‘Bﬂ’lan”A
+ ‘IIQBA A‘u‘Baav + @,u/la'@va}. - %@j,u,{vBoo/{ ]
+ LA (‘QyP)F’@,ByAsjl¢) - V/I (T”VB#AV) . (34)

We remember that the above numerical value of .7, has to
be expressed in terms of 7, 4, ¢, and other derivatives.

For calculational convenience the last Legendre trans-
formation between B and 7 can also be performed in two
steps. First we perform the Legendre transformation be-
tween a, and 7”. Then we subtract the complete divergence
3, (27#*A,*,) from the Lagrangian. Finally we observe that
the Lagrangian depends algebraically on A. Equations 6L /
S8A = Oare therefore algebraic with respect to A. In a generic
situation these equations can be treated as a definition of A in
terms of j'4 and j'r.
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IV. SPECIAL CASE: LAGRANGIAN WITHOUT
POTENTIALS

As an example of the above procedure we consider a
Lagrangian (6) which does not depend on I',*,. We have

therefore /*;*=0and d*;”=0. One can check that the
nonmetricity Eq. (17) for I can be solved algebraically with
respect to 2. This way we obtain an explicit form of the
function &. Putting this solution into formula (25) we get
the following expression:

G, = — (2/y[ —detbg) [ (T7P05%, + T7°F0L%,)
+ Ry, (THPALE, + TPALY)
+ hoy g B (AL, + AL,
— 2k, B TN,
+4(8,%a, +8,%a, — 3h,,h*a,),

where 7 = 7(&P,F,BA, j'¢) is defined by (13). We can
therefore calculate £, (31) as follows:

St (J'1BF,BA, j'$)

= (1/2k)y/ — det g (h*°R,,, + 3}h""a,a,)

+ U(hA) + W (hA7) + L, (]PF,BA,j'$),
(36)

where by U(h,A) and W,(h,A,7) we denote the algebraic
functions of the metric 4,A (the traceless part of B) and of
7=71(8P,F,BA,;'$):

U(h,A) = — (1/2¢)\[ — deth s h*A, " A%, ,

Wi (A1) = (4c/y[ — det hog )7Pr o {h,, A5 A",
+ 2k, A5 AL,
+ haa By 5 Ay — h* [ hoghin 850",
+ (haphey + 2hoehs, YA A,7, 13 (38)

Now we perform the Legendre transformation between the
configuration B and the momentum 7. The new matter La-
grangian .¥ ., equals

(35)

(37)

gmat = fmat(jlh’le!F»A’j]‘ﬁ)
=R — 9, (T"“’Bﬂ’lv)
=L — TP, + (3, 7Ma, — 2V, (7*A ).

(39)
In order to express the Lagrangian in terms of legal variables
we have to solve Eqgs. (13) with respect to B. Moreover, we
have to solve Eqs. (18) and the trace of (17) with respect to
B (i.e., Aanda). Let us denote the algebraic solution of (13)
with respect to P by 8. Due to (29) we have

B, =%, (i'hj'7j'4,j'¢) +6,%,B,",
+ @VUAB#}'O - %BC,”AB#}‘V . (40)
The trace of Eq. (17) can be rewritten as
a, = (4«/\[ —deth,g ) (h;,7*A,°, —4h,,0,77%) . (41)
Equation (18) [with I",*, defined by (24)] is linear with
respect to A,%,. Let A%, = A, % (j'h, j'7) be the solution

of this equation. Easy calculations lead to the following re-
sult:
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L e = (1/26)[ — det b 'R, — 1B,
+ L, (83,F6,A4,'¢)
+ (4k/y[ — et hgg ) (hy, 70,7, 8,7
— Lk, 8, 73,7°)
— 20,4V, 7% + U(h,A) — Wy (h,A,7T) (42)

where by W, (h,A,7) we denote the algebraic function of the
fields 2, 7 and of A = A( A, j'1):

W, (kA1) = W, (hAT) + (12k/\[ — det hg Yh*hyehy,
X TN, A, T,
= (4x/y[ — det bz ) 7°Pr*{h., A5 A",
+2h,, A, 50,7
 ho g A S A, — B [haehi, A5, A",
+ (Baphey — hoghi)055,8,7, 13 (43)

V. MOFFAT'S THEORY

The above considerations can be applied to Moffat’s the-
ory* (the gravitation theory with a nonsymmetric “met-
ric””). The theory is based on the following Lagrangian L, ,:

Ly = Q#w»mm(jll_‘) + Lo (8% W0, J'0) (44)
where ¢“¥is a (nonsymmetric) tensor density,

M, (j'T)=R,, (j'T) + 4L, %, —T. %) (45)
and

W, =3 —LA) =3 —4,). (46)

The variation is meant with respect to I" and g independent-
ly. Here L, is a Lagrangian density for the “phenomeno-
logical matter sources.”?

Due to the decomposition of g** into symmetric and
skew-symmetric parts:

prr=g*",

7““ V— _ ig[.‘“’] .
we can rewrite formula (44):

Lyor =pK,, (J'T) + 7#'[P,, (J'T) —iF,, (j'T)

—6D;A,* ]+ L, - (49)

This Lagrangian differs from (6) by the term containing the
derivatives of the torsion. However, the derivatives enter vig
the same combinations as the ones contained already in P,
Therefore, our techniques can be applied also in this case.

The variation with respect to g can be replaced by the
independent variations with respect to p and 7. The Euler—

(47)
(48)

Lagrange equations O6L/64=0, 6L/6T' =0, and
SL/SA = 0 have the form:
L
8,74 = = —3 oL _ _ g (50)
aw, aw,
D, p* = —8A, %, 7, (51)
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DT 438,149,717 = JA, 0717 (52)
Equation (51) implies
a, = — (8x/y[ —deth,z ) h;,7A,°, . (53)

Comparing the above result with formula (41) we see that
a, is already expressed algebraically. Consequently, after
the first Legendre transformation between X,%, and p*”,
reexpressing D; A, %, in terms of j'h, 7, j'A and using (53)
we obtain the following numerical value of the matter La-
grangian:

8milt = T#V[P‘uv(jlr) - %va(jll_:‘) - 4Vi A;LAV]
+ U(hA) —4W,(h,AT) + L, . (54)

Moreover, it is convenient to use the field W, instead of a
couple of fields 4, and I';*,. Finally, adding the complete
divergence 4V, (7°A,*,) = 49, (7**A,*,) we obtain the
matter Lagrangian for the Moffat’s theory:

Jmat = Zma! (jlh’j!T’jl u/’A’.]l¢)
= — W, + 48,5V, 7% + U(h,A)
— AW, (hA, 1) + L, (B, W, /). (55)

We notice that A enters only algebraically into the above
Lagrangian. Equations L/8A = 0 are therefore algebraic
equations for A. In a generic situation these equations can be
treated as a definition of A in terms of j'4 and j'7. This way
we can eliminate A as an independent variable of the theory.
Analytically, the function A( j'A, j'7) is very complicated.
Finally, we obtain the theory with two independent matter
fields: 7#¥ and W, coupled to the (symmetric) metric ten-
sor A,,, . The field equations can be derived from the follow-
ing Einstein—-Hilbert Lagrangian:

Sk, j' W) = — (1/26) — et bz K™K, (h)

+ L matJ 7, ] WA, j )] B). (56)

Observe, that both metric tensor 4 and matter fields (7 and
W) are original Moffat’s fields. We therefore proved, that
subtracting the complete divergence from the Lagrangian,
and reexpressing I in terms of (4,7, W) Moffat’s theory be-
comes Einstein theory.

The situation here is similar as in classical mechanics,
where the variational formula based on the Lagrangian
L = — gp— H(p,g) can be used with p and g independent.
Instead, it is better to add the complete time derivative
(d /dt) (pg) and express p in terms of ¢, using the part of
equations of motion. This way we prove that p are not inde-
pendent degrees of freedom of the theory.
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This is the first of two papers in which the authors give a complete classification of symmetry
reduced solutions of Plebanski’s potential equation for self-dual Einstein spaces. In this first
part the infinite pseudogroup of symmetries of Plebanski’s equation is described, and the
conjugacy classes of all local subgroups of dimensions one, two, and three over both the real
and complex numbers are classified. Then in the second paper, this classification is used to

obtain all symmetry-reduced solutions.

I. INTRODUCTION

The purpose of this investigation is twofold. On the one
hand, we plan to apply, in a systematic manner, the method
of symmetry reduction, to obtain group invariant solutions
of the Euclidean signature self-dual Einstein equations. On
the other hand, a first step in this program is to obtain the
relevant local symmetry group of local point transforma-
tions and then give a complete classification of its low-di-
mensional local subgroups. Since this treatment is entirely
local, we work infinitesimally with the corresponding Lie
algebras.

In the present paper (Part I of a series of two) we show
that the infinite-dimensional symmetry group is essentially
one of Cartan’s infinite-dimensional primitive groups' and
provide a classification of its complex and real subalgebras of
dimension less than four. It is precisely the real subalgebras
that correspond to groups having orbits of codimension %,
with 1<k<3 in the underlying space of independent vari-
ables R, and that hence provide a reduction of the consid-
ered equations to lower-dimensional ones.

Actually we do not deal with the self-dual Einstein equa-
tions”> per se but with the potential equation obtained by
Plebanski,*

Qxiﬂyj - ijzQiy - 19 (*)

where x, yeC, Q is a real function, and subindices indicate
partial derivatives. This Monge—Ampere type of equation is
of independent interest, having a rich history. Calabi’~” has
studied the n-dimensional analog that he calls the Levi in-
variant equation. The function ) appears as a local Kéhler
potential on some domain of C?, and gives rise to what has
become known in the literature as Calabi—Yau spaces. These
spaces are not only Kihler but hyperkihler,’ that is, there is
a two sphere’s worth of complex structures on R* that are
compatible with the metric and the metric is Kéhler with
respect to all of these complex structures. In all that follows
here we shall make a choice of complex structure and hence,
a choice of Kihler pojential.

It has been known for some time that Eq. (*) has an

infinite-dimensional symmetry “group” although it doesnot

seem to have appeared in the literature. (The symmetry
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group of a related equation was determined in Ref. 8.) Itisat
least partially the purpose of the present paper to not only
rectify this but also to show that the “symmetry group” of
(*) is an Abelian extension of one of the infinite primitive
pseudogroups of Cartan, namely the pseudogroup of all bi-
holomorphic maps from domains in C? to itself with con-
stant Jacobian determinant.

In Part II of this series we shall use the results obtained
here to systematically apply the method of symmetry reduc-
tion®'°to Eq. (*) to find all solutions that can be obtained by
this method. From these solutions we can then write down
the corresponding self-dual Einstein metrics that should be
of interest from the point of view of gravitational instan-
tons.!'~!* In the process we show how Eq. (*) is related to
many other interesting partial (and ordinary) differential
equations.

The outline of the present paper is as follows: In this
section we give a brief discussion of self-dual Einstein spaces
and their relationship with Eq. (*). In Sec. II we determine
the Lie algebra of infinitesimal symmetries of Eq. (*). Sec-
tion III consists of relevant comments about the classifica-
tion of subalgebras. Sections IV and V make up the heart of
the present article. They give the classification of conjugacy
classes of complex and real subalgebras, respectively, of di-
mension less than or equal to three under the relevant pseu-
dogroup of transformations. Finally Sec. VI gives a brief
conclusion of our results as well as a preview of things to
come.

Let us recall briefly how the ) equation (*) arises from
the self-dual Einstein equations. This was first derived in this
context for the complex self-dual Einstein equations by Ple-
banski.* Let (M,g) be a four-dimensional Riemannian mani-
fold. The Levi-Civita connection I' has values in the Lie alge-
bra so(4). But there is a well-known isomorphism
so(4) ~su(2), ®su(2)_, where we have labeled the two
copies of su(2) by + for convenience. Thus the connection
splits T=T, +'_andwelet R, =curvI, . The Rie-
mannian manifold (M,g) is called self-dual if R_ = 0. It is
not difficult to see by writing things out explicitly that
R_ =0or R, =0 implies the vacuum Einstein equations,
in fact, the Ricci tensor vanishes identically. Thus R _ = 0is
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called the self-dual Einstein equation. Now R_ = O means
that I' _ is aflat connection. Here I' _ are connections on the
(locally defined) spin bundles ¥, M. Although V', M may
not be defined globally as bundles on M, their second-order
symmetric tensor product bundles S2_ M are globally de-
fined bundles on M. Furthermore, I" , induce connections,
also denoted ' _, on S2_ M. There is another important
splitting related to the Lie algebra splitting described above,
namely, the splitting induced by Hodge’s * operator on two-
forms. In four-dimensional Riemannian geometry * is an
involution on two-forms AM split into the plus and minus
eigenspaces of #, viz.,, A’M = A, M ® A>. M. Furthermore,
this splitting is compatible with the Lie algebra splitting and
this gives rise to bundle isomorphisms S% M ~A’ M.
Thus T, can be considered as connections in AZi M, the
bundles of self-dual ( + ) and anti-self-dual ( — ) two-
forms.

We now describe the consequences of having a flat con-
nectionI"_ on A> M =S? M. From now on our consider-
ations will be entirely local. We use the standard dotted and
undotted spinor indices that are to be raised and lowered by
the symplectic form €, according to the convention 3,

= €,,¥°, where 4,B =12 and the Einstein summation

convention is used on repeated indices. In spinor notation an
orthonormal moving coframe is written as 6 “. We define an
almost complex structure on T *M by requiring 841 = 8,,.
Then a basis (locally) for A2 M is given by

S48 =1e,,0" NG, (1.1)
where $#4 =548 apd $*% = § 45- Now as mentioned pre-
viously R_ =0 if and only if T _ is flat, that is, there is a
choice of orthonormal frame such that the connection coeffi-

cients I ;5 with respect to this frame vanish. It follows that
the two-forms S % are all closed, i.e.,

ds*? =0. (1.2)

Considering first dS R - 0, by Darboux’s theorem there are
local coordinates {g*; 4 = 1,2} such that

S = dg' Ndg* = Jdgq" Ndg,. (1.3)
Moreover, § 2 Sii = § " = dg’' A dg?. Now let us consid-
er S First, S”? =8 = —8;; = —S;;. Second, this
form is nondegenerate since an explicit computation shows

2SPASE=SHASE = SIAS (1.4)
and the latter is proportional to the volume element on M.
Since S ' is closed and nondegenerate g is a Kéhler metric on
M and S *? is the Kihler form. So locally there is a smooth
function  such that

5?2 =Q . »dg" Ndg", (1.5)
where @ _.» = 3Q/3¢" dg°. Now since the Levi-Civita con-
nection I' =T, has values in su(2), the local holomony
group must be SU(2) or a subgroup thereof. It follows that
under a change of SU(2) frame, the volume element § 1
A S ? is preserved, thus about every point of M there are
coordinates such that (1.3)—(1.5) hold. Plugging (1.5) into
(1.4) and using (1.3) gives the ) equation (*).
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{l. THE SYMMETRY GROUP OF THE © EQUATION

In order to apply the method of symmetry reduction to
(*) we need to compute its symmetry group. We shall show
that this group is an Abelian extension of one of the six infi-
nite primitive pseudogroups of Cartan (Ref. 1, Theorem
IX). More precisely, we compute the Lie algebra of infinites-
imal symmetries; but rather than work with the differential
equation itself, we write it as an equivalent Pfaffian system.
First, notice that (*) can be written as a conservation law,
namely,

9,0, s —G5) =0 (2.1a)
or equivalently, the complex conjugate equation
3,,(Q3,Q 12 —q4) =0. (2.1b)

Equation (2.1a) is the integrability condition of the exis-
tence of a local complex-valued smooth function 2 satisfying

(2.2)

Similarly, we get the complex conjugate equation arising
from (2.1b). In order to write the corresponding Pfaffian
system we first construct the contact form 6, for 2 and then
add the one-forms describing (2.2) and its complex conju-
gate. We arrive at

6p=dQ —p, dq* —p, dg*,

6, =dz — P4 dPA — S, qu + 194 d?Ar

01 =d2—2ﬁ4 dﬁA—EA qu'*"%qA qu’
which is a Pfaffian system .# on the two-jet J2(C%R X C)
(actually on a certain submanifold R'® of the two-jet) where
q', A=12 are complex coordinates on C? and
(9,2)eR X C. The integral submanifolds N—>J2(C,RXC)
which annihilate .# and satisfy the independence condition
dq', Ndq’ Ndg!, N\ dg*+#0 are precisely the solutions of ().
Thus any infinitesimal contact transformation symmetry of

(*) must map £ to .. So we consider the vector fields on
J2(C%LR X C) which satisfy

z_qn = Qq‘ﬂq,.ag -_ aB'

(2.3)

Lxei = z A[jejy Lj=0,+1, 2.4)

where 6_, = 8, and A ; are smooth functions. Of course, if
L,6,e then L,6,€.#. The method for solving (2.4) is by
now quite standard so we omit the details, just presenting the
infinitesimal symmetries and vector fields on R'>,
X7 = laq, +a
X" =4ap, +a_p"+ By,
X*=4a+a)Q+B+5,
X' = (=3 + D5y + @ ps”

(2.5)

+ aq‘q”qCpoC+ﬁq”quB + Vs
X*=a3Z +)a . .pp’+ B p'+ia g +a+,

and their complex conjugates. Here, a, f5,-and ¥ are holo-
morphic functions on open sets of the origin in C2.

Let us now discuss the structure of the symmetry alge-
bra 7 of the Pfaffian system (2.3). There are three arbitrary
holomorphic functions of the complex variables {¢',¢*},
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namely, , 5, and ¥, and one complex parameter a. Further-
more, the vector fields

X, = [B(@) + B(§)18q,
sz = RC[’}/(q)az ],
X’z» =Im[y(¢): ],

generate an infinite-dimensional Abelian ideal Ain T. More-
over, X, and X, generate g-dependent translations in = and
S, the first integrals of £). Therefore, they do not appear as
infinitesimal symmetries of the ) equation (*). Thus the full
infinitesimal symmetry algebra 7 of the {} equation is gener-
ated by two holomorphic functions & and S and one complex
parameter a. In order to discuss further this symmetry alge-
bra we introduce an affine bundle (not a vector bundle)
A—C? where {g": 4 = 1,2} are complex coordinates on C2
and a local section of A4 is given by the graph
(¢".¢")—q".9°,Q(4,3)), so the fibers of 4 are real affine
lines, i.e., there is no fixed origin in the fibers. In fact, the
transformation generated by X sends the section Q to
Q + B(q) + B(g), which is a base point dependent transla-
tion in the fibers of 4. With this in mind the representation of
T given by the vector fields (1.2b) is the prolongation to the
one-jet J 1 (4,R) of fiber preserving local transformations of
A—C2. However, we shall see later that from the point of
view of symmetry reduction the Abelian ideal 4 generated
by X, plays no role whatsoever. It is thus only the factor
algebra T'= T /A which is of interest to us, and T is easily
identified with one of the transitive primitive algebras of
Carin,' namely the Lie algebra of holomorphic vector fields
on C? with constant divergence. It should also be mentioned
that the transformations of 7 fix the zero section of 4. Thus
A =~C?XR can now be viewed as a trivial vector bundle over
C?, i.e., as a product.

Let us summarize our results as the following theorem.

Theorem 2.1: The infinitesimal symmetry algebra T of
infinitesimal contact transformations of the {2 equation (*)
is the prolongation to J?(4,R) of infinitesimal transforma-
tions ¢; 4 — 4 preserving the affine structure of 4. Further-
more, T is isomorphic to an Abelian extension of the Lie
algebra T of holomorphic vector fields on C? with constant
divergence by the infinite-dimensional Abelian ideal genera-
ted by X,. Moreover, the infinitesimal transformations of T
preserve the product structure 4 ~C> X R.

Asmentioned previously, it is the factor algebra T thatis
of interest for the purposes of symmetry reduction, and an
important consequence of Theorem 2.1 is that as a complex
Lie algebra, T consists of holomorphic vector fields. We
shall be interested mainly in real subalgebras L of T and we
shall associate to such subalgebras a complex invariant,
namely, the complex divergence of the complexification X ¢
of vector fields X in L. To this end we consider the simple
subalgebra T, C T consisting of all holomorphic vector fields
on C? with zero divergence. Then we have the following
lemma.

Lemma 2.2: Let L be a real subalgebra of Tand L' its
derived algebra, then L ' C T,

Proof: Let E denote the one-dimensional complex Lie
algebra generated by the Euler vector field on C2. Then T, is
an ideal in 7 and we have an exact sequence of Lie algebras

(2.6)
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0-T,-T—-E-O.

It follows that 7' C T,,. Moreover, as areal Lie algebra Eis a
two-dimensional Abelian Lie algebra, so for any real subal-
gebra LC T, L 'C T and this proves the lemma.

Now any infinite-dimensional Lie algebra T of vector
fields on C" generates a pseudogroup of transformations on
C? as follows'*: Let {X_} by any collection of (locally de-
fined) vector fields in 7. We can integrate these vector fields
locally to get a collection of local one-parameter groups
{¢._}. The set of all such local diffeomorphisms generates a
pseudogroup P(T) (the pseudogroup generated by 7). In
our case the Lie algebra T"generates the pseudogroup of local
biholomorphic diffeomorphisms of C? with constant Jacobi-
an determinant P, whereas T, generates the subpseudogroup
with unit Jacobian determinant P,. Now given any subalge-
bra L C T'we will make use of the subpseudogroup N(L) CP
that normalizes the subalgebra L.

Finally to end this section we mention the connection
between the infinitesimal symmetries of (*) and Killing vec-
tor fields on a given solution of (*). In Ref. 15 the homothe-
tic Killing equations were integrated and a standard form for
any homothetic Killing vector field was given. It is easy to
see that any Xe7 is a homothetic Killing vector field. How-
ever, the pseudogroup S of allowed transformations for the
homothetic Killing equations is larger. In general, § does not
preserve the complex structure, but PC.S. The action of S on
the coordinates is induced by the action of SO(3) on A2 M
=8?2V_M, which leaves (2.2) invariant. The unit sphere
bundle in A> M can be identified with the bundle of com-
plex structures on M. So any homothetic Killing vector field
will fix a complex structure and thus is equivalent to a vector
field in 7. However, there is an action of SO(3) which per-
mutes all complex structures and so this is not equivalent to
any subgroup of P. This gives a class of Bianchi IX solu-
tions'® of (*) that cannot be obtained by symmetry reduc-
tion of (*).

lil. GENERAL COMMENTS ON THE CLASSIFICATION
OF SUBALGEBRAS

In order to perform a symmetry reduction for the )
equation we need to know all low-dimensional subgroups of
the symmetry pseudogroup P of this equation. More precise-
ly, we need a classification of all local subgroups that will
have generic orbits of dimensiond = 1, 2, or 3 in the underly-
ing four-dimensional Euclidean space-time. Our procedure
will be an algebraic one: we shall classify subalgebras of the
symmetry algebra, namely the algebra of holomorphic vec-
tor fields in two complex variables, having constant diver-
gence. The classification will be under the action of the pseu-
dogroup P of holomorphic transformations with constant
Jacobian determinant.

Lie in his classical lecture notes'® (see also Cartan'®)
has solved a related problem, namely that of classifying all
continuous groups of point transformations in two complex
variables. He obtained an exhaustive list of representatives of
Lie algebras that can be realized in terms of holomorphic
vector fields in two complex variables. The vector fields do
not necessarily have constant divergence. Furthermore,
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Lie’s classifying group is correspondingly larger: the trans-
formations do not necessarily have constant Jacobian deter-
minant. Lie’s results cannot be directly adapted to our case,
mainly because the value of the divergence of a vector field is
coordinate dependent and is thus not invariant under arbi-
trary transformations.

We shall be interested in low-dimensional Lie algebras,
realized in terms of either complex or real vector fields.
However, before discussing the general procedure we shall
make some simplifications. First, we show that for symme-
try reductions it suffices to consider the factor algebra
T=T /A. Moreover, according to Theorem 2.1, we may re-
strict ourselves to vector fields that represent infinitesimal
symmetry transformations of the affine bundle 4. Such com-
plex vector fields may be written as

X=(aq"+an)6qA+aﬂan + Bd,. (3.1)

The corresponding real vector fields are obtained by simply
taking the real part of (3.1). Ifaand a 4o not both vanish,
we can make the g-dependent translation (3—Q + y and re-
move 3 by choosing ¥ to be a solution of the first-order inho-
mogeneous partial differential equation

(aq"+an)7/qA—ay+B=O. (3.2)

On the other hand, if both ¢ and a , vanish, the invariant is
an arbitrary function F(q',¢°,",§°) which is independent of
1 and thus does not give rise to symmetry reduced solutions
of the () equation (*). Thus we may restrict our consider-
ations to the Lie algebra 7. Furthermore, notice that the
projection 7: A »R* induces a Lie algebra 7, T that is iso-
morphic to T. So in order to simplify notations in Secs. IV
and V and especially in the tables, we will drop the terms
involving d;, in the vector fields. The notation X and X ®
below will be used for the projections of the vector fields onto
the base manifold, i.c., elements of 7, T. The full vector
fields are always recovered by adding i(div X)Qd,, or
1(div X + div X)Qd,,, to the corresponding complex or real
vector fields.

The complex vector fields under consideration have the
form

X = f(x, )3, + g(x, y)d, (3.3a)
satisfying
divX= f, + g, = a = const. (3.3b)

Real vector fields that we are dealing with have the form

X =f(x, )3, +g(x, y)3, + (%, 7)05 + (%, 1)3;.
(3.4a)

We have
divX®=f +g,+f +& =a+a (3.4b)

Thus we may have div X ® =0, but div X = a = — a#0.

Vector fields and algebras of vector fields will be classi-
fied under coordinate transformations of the pseudogroup P
which we write explicitly as

E=F(x,p), n=G(x,), (3.5a)
with constant Jacobian determinant,
detJ=J,=F,G, — F,G,. (3.5b)
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Let us first present some general results that will be used
below in the subalgebra classification.

Lemma 3.1: Let X be a vector field of the type (3.1) in
coordinates (x, y) and X the same vector field in coordinates
(&,m) of (3.5a). The divergences of X and X are related by

div X = div X + X In(det J). (3.6)

In particular, if det J = J;, = const, then div X is invariant
under (3.5).
Proof: The transformed vector field is

X=(/fF, +gF,)d; + (fG, +gG,)d,. 3.7
A simple calculation yields (3.6). Q.E.D.

Lemma 3.2: If A, B, and C are three vector fields, satisfy-
ing4 = [B,C] and div B = 3, div C = ¥, where B and y are
constants, then div 4 = 0.

Proof: A simple calculation yields

divA4 = Bdiv C — Cdiv B. (3.8)
Hence
divd =By — Cf=0. Q.E.D.

Remark: Lemma 2.2 is a simple consequence of Lemma
3.2. We shall make use of the known classification of two-
and three-dimensional Lie algebras into isomorphism
classes.'®!® They can be summed up in two lemmas.

Lemma 3.3: Any two-dimensional Lie algebra over ei-
ther C or R is isomorphic to one of the following ones: (1)
Abelian: 24,

[X,.X,] =0. (3.92)
(2) Solvable, non-Abelian: 4, ,,
[X,.X,] = X,. (3.9b)

Lemma 3.4: Any three-dimensional Lie algebra over ei-
ther C or R is isomorphic to one of the following ones: (1)
Abelian: 34,

[X,X,] = [X0.X5] = [X3.X,] = 0. (3.10a)
(2) Decomposable, non-Abelian: 4, , & 4,,

X, X:] =X, [XX5]1=0, [X.,X;]=0. (3.10b)
(3) Indecomposable, nilpotent: 43 ,,

[X.X5] =X,, [X,X5]1=0, [X,X,]=0. (3.10c)

(4) Indecomposable, solvable, non-nilpotent, with a two-
dimensional Abelian ideal {X,,X,},

() =#G). mai—o m=(2 9).

(3.10d)

Over C the matrix M has one of the following forms:

1 0
A%, M,C=( )

0 a
0<la|gl, aeC, if |a|=1,
then O<arg a<m, (3.10e)
1 0
A MZC:(I 1)‘
C. P. Boyer and P. Winternitz 1084



Over R the matrix has one of the following forms:

1 0
A‘3’,2:Mf=(0 a)’ acR, 0O<|a|<],
1 0
Ay M§=(1 1), (3.10f)
. R a —1
54 M3 = | 7 ) acR, 0<a.

(5) Simple.
Over C the only possibility is s1(2,C),

A;5: [X,X,] =X, [X.X;]=X; [X,X]=—2X,
(3.10g)
Over R there are two cases: (a) sl(2,R)

~su(1,1) ~0(2,1) with commutation relations (3.10g),
and (b) su(2) ~o0(3) with commutation relations

Ase: [XoXi] = €X {ikJ}={1,23}. (3.10n)

Two useful lemmas that can be proven by direct calculations
are the following.

Lemma 3.5: The most general transformation of the
type (3.5) leaving the vector space {X; = d, } invariant is

E=Ax+H(y), n=pFy+v, Au#0, (3.11)

where A,u,veC are constants.
Lemma 3.6: The most general transformation of the
type (3.5) leaving the vector space {X, = xd, } invariant is

E=Ax/G(y), n=G(y), A#0, G(p)#0. (3.12)

We restrict our classification to subalgebras of dimen-
sion d with 1<d<3. Thejustification for this is that thed = 3
subalgebras already provide reductions of the (2 equation to
ordinary differential equations, or to algebraic ones. Higher-
dimensional algebras will always contain at least one three-
dimensional subalgebra, so the algebras of dimension d>4
will not provide any new reductions. Indeed, every simple
Lie algebra except su(1,1) contains at least one class of
su(2) subalgebras. Every solvable Lie algebra of dimension
n has subalgebras (and ideals) of all dimensions 1<d<n.
Algebras that are neither simple nor solvable have a Levi
decomposition in which the semisimple part is either su(2)
orsu(1,1), or contains at least one of them as a subalgebra.

The problem of classifying subalgebras of the Lie alge-
bra of holomorphic vector fields with constant divergence
into conjugacy classes and the action of the pseudogroup Pis
conceptually similar to that of classifying the subalgebras of
a finite-dimensional Lie algebra under the action of the
group of inner automorphisms. The classification methods
have been developed and applied in a series of earlier pa-
pers.2>22

IV. CLASSIFICATION OF LOW-DIMENSIONAL
COMPLEX SUBALGEBRAS

A. One-dimensional subalgebras

We are given a vector field (3.1) satisfying (3.2) and
perform a change of variables (3.5). The vector field trans-
forms into (3.7). We set
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fG, +gG, =0, (4.1a)
fF. +8F, = — (8/G,)J, (4.1b)

Relation (4.1a) amounts to a choice of the function G(x, y)
that can always be made; (4.1b) is then a consequence of
(4.1a) and (3.5b). The vector field X in the coordinates
(£,m) is now

X= — (8/G,)o,. (4.2)

By assumption, J, is constant; if we require that — g/G, be
constant then (4.1a) implies the compatibility condition
f« +8, =0.Ifthisissatisfied, i.e., if we have div X = 0, then
X is conjugate to X = d,. If on the other hand, we have
div X = a#0, we set — g(J,/G,) = aF, and obtain equa-
tions for G and F that are always compatible.

We arrive at the following theorem.

Theorem 4.1: An arbitrary one-dimensional subalgebra
{X} of the symmetry algebra is conjugate to one of the two
following Lie algebras:

L ,(C)=1{a,}, (4.3a)
L,,(C) ={x3,}. (4.3b)

They are distinguished by the fact that div X = 0 for XeL ¢,
and div X 0 for XeL §,. a

B. Two-dimensional subalgebras

Consider a Lie algebra {X,,X,} with a commutation re-
lation as in (3.9). We shall assume that X, has already been
transformed to standard form as in (4.3); X,, on the other
hand, is left general, as in (3.1). The procedure is first to
implement the commutation relation, then simplify X,, us-
ing the normalizer subpseudogroup, N or P{X,} of X, in P.

1. Abelian algebras

(a) Take X, as in (4.3a) and require [X,,X,] =0,
div X, = a = const. We obtain

Xl=a,x’ XZ =f( y)ax + (ay+ﬁ)ay' (4.43)

The normalizer pseudogroup of X, is given in (3.11)
and it transforms the vector fields into

Xl—_—iaé-,
X, = [AM(») + (ay + BYH(»)10; + (ay + B)ud,,.
(4.4b)
If (aB)#(0,0) we choose H(y) to satisfy

(ay+B)H + Af(y) =0.Ifa#0weputav =fFu.Ifa =0,
B #0 we put Bu = 1. Finally, if (a,8) = (0,0) no simplifi-
cation occurs.

(b) Take X, as in (4.3b). Imposing [X,,X,] =0 and
replacing X, by X, — aX, we obtain

X,=xd,, X,= —g(y)xd, +g( »a,. 4.5)

Performing a transformation (3.12) with G( y) = a/g( y)
we reduce the algebra (4.5) to X, = £d,, X, =4,,.

2. Non-Abelian algebras

The commutation relation is given by (3.9b). Accord-
ing to Lemma 3.2 we have div X, = 0. With no loss of gener-
ality we can take X; = d,. From (3.9b) and (3.2) we obtain
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X, =0, Xo=I[x+h(p]d,+ (ay+)J,. (4.6)

Performing a transformation of the form (3.11) with H( y)
satisfying A( y)A + (ay + B)H = H we reduce (4.6) to

Xlzag’ X2=§ag+ (an—av+B/.t)8,,. (4.7)
If @0 we choose v and u so that Su —av=0.Ifa =0,
B #0 we choose u so that Su = 1.

The results of this subsection are summarized in Table L.
We have denoted V' the vector space spanned by the vectors
{X,,X,} at any generic point (x, ). The three Abelian alge-
bras L,, (C), L,, (C), and L4, (C) are distinguished from
each other by the invariants in columns 5 and 6, namely
divX, the divergence of the general element
X = pu, X, + p,X>, and the dimension of V. For the 4, ; type
algebras these invariants coincide for L, , (C) and L § 5 (C) if
a#0, a7 — 1. In this case X, is uniquely defined as the
vector field spanning the derived algebra. The value of a
itselfis an invariant under the action of the isotropy group of
X, i.e., the transformation (3.11).

The algebras L/ ; (C) are somewhat exceptional. They
depend on one arbitrary function f{ y).

In order to avoid redundancy in Table I and in other
subalgebra lists we establish the following equivalence rela-
tion. The two sets of linearly independent functions

{A) s /() and {g,(»),.... 8. (N},
are equivalent, if constants A #0, u, and a matrix
peGL(n,C) exist, such that

8&(y)= 2 Pix Ji (Ay + ). (4.8)

k=1

Using this equivalence concept we arrive at the follow-
ing theorem.

Theorem 4.2: Every complex two-dimensional subalge-
bra of the algebra g of holomorphic vector fields with con-
stant divergence is conjugate under the pseudogroup P to an
algebra in Table I. Two algebras in Table I are mutually
conjugate if and only if they are in the classes L ; (C) and
L%, (C),and the pairs (1, f{ y))and (1, g( y)) are equivalent
under relation (4.8).

C. Three-dimensional subalgebras

It follows from Lemma 3.4 that all complex three-di-
mensional Lie algebras except sl(2,C) have a two-dimen-
sional Abelian ideal. We choose it to be {X,,X,}. For solv-

TABLE I. Two-dimensional complex subalgebras.

Basis
divX
Ny Type X, X, X=p X, + pX, dim ¥
L,(C) 24, 9, 8, 0 2
L,,(C) 24, a, .Vay M 2
L{.s (C) 24, a, A3, 0 1
A #0

L,.(C) 4,, I, xd, + 9, 123 2
L3s(C) 4,, d, xd. +ayd, Ll + @) 2ifa#0

Oifa= —1 lifa=0
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able non-nilpotent Lie algebras this ideal is unique. Our
procedure will be to assume that {X,,X,} is in one of the
standard forms L, (C), L,,(C), or L ;(C), whereas X,
has the general form (3.1) satisfying (3.2). We then impose
the commutation relations

()= 2)G): w=(C Q) o

for each standard form of M. Finally, we standardize M,
using the normalizer pseudogroup of the ideal {X,,X,}. For
Abelian and nilpotent algebras we must afterwards weed out
possible redundancies, due to the uniqueness of the Abelian
ideal.

Simple subalgebras, i.e., sl(2,C) subalgebras, will be
treated separately. In this case use will be made of the fact
that s1(2,C) contains a subalgebra of the type 4, ,, that is,
however, not an ideal.

1. Solvable subalgebras
(a) Ideal L, , (C) ={4,,d,}. We have

X ,X xax + xa
([ ‘ 3])=(f 8 y). (4.10)
[XZ’X3] f:vax +gyay
Combining (4.9) and (4.10), we obtain
f=ax+cy+p, g=bx+dy+gq (4.11)

Replacing X; by X;—pX, —qX, we effectively set
p=¢q=0. Performing linear transformation of variables
(&£ = pux + vy, 1 = px + oy, po — pv#0) we can transform
the matrix M to its standard form.

The Abelian case (3.10a) is excluded, since

(a b) (0 0)

c d/ \0 o0

implies X; = 0. The decomposable case occurs if a =1,
b=c¢=d=0in M. This yields the decomposable algebra
{0,.,d,,x3, }. The nilpotent case (3.10c) occurs for ¢ = 1,
a=b=d=0andleadsto{d,,d,, y3, }. The diagonalizable
case (3.10e) corresponds to a =1, d = a(0<a<l) and
yields {d,,d,,xd, + ayd,}. Finally, the Jordan case (3.10e)
corresponds to a=d=1, c=1, b=0 and the algebra
{0,,9,, (x+ )9, +y3,}.

(b) Ideal L,, = {d,, yd,}. According to Lemma 3.2,
X,=yd, cannot figure in the derived algebra. Hence
b=d=0in (4.9). Moreover, we have f, =a, 3f, =c¢, g,
=0, yg, — g = 0. Taking an appropriate linear combina-
tion of X; with X, and X,, we obtain X; = (ax + cIny)d,.
The transformation in P that leaves L, , invariant is

E=ax+ylny+u mn=vy, av#0. (4.12)
The vector fields transform into
X, =ad,, X,=7v0 d,,
1T 30 A2 =70 10, (4.13)

X;=[af+ (—ay+ac)lny + (ay — ac)ln v — auld,.

If a£0 we choose ¥ = ac/a, u = 0 and obtain a decompos-
ablealgebra{d,, yd,,xd, }. If a = O we obtain a nilpotent Lie
algebra {d,, yd,,In yd, }.
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(c) Ideal L ¢, (C) = {3,,8( »)3,; $( ) #0}. The com-
mutation relations in this case are’

([X,,X3]) B (fxax + 8.9, )
(X, X51)  \(¢f. —g8)3, + ¢g.9,
3 [a+b¢(y)]ax)
‘([c+d¢(y>]ax ' (@19

Taking linear combinations of X, and X, and perform-
ing an appropriate change of variables we can simultaneous-
ly assume that {X,,X,} remain in their standardized form
X, =9, X,=¢(y)d, and that the matrix M is in its stan-
dard form (as in Lemma 3.4).

From (4.14) we obtain

g=g(y), f=la+bd(y)]x+¥(y), (4.15)

gp=b¢>+ (a—d)g —c. (4.16)
Further, div X; = A implies

a+bd(y) +g(y) =4 (4.17)

The transformation (3.5) that leaves the ideal {X,X,}
invariant is

E=x+H(y), n=py+g
It transforms the algebra to
X, =3d;, X,=4dd,,

X;=[(a+bp)E+ v+ gH— (a+bp)H 13, + pgd,.
(4.19)

p=0. (4.18)

Let us now run through all standard forms of M.

(i) Abelian algebras:a = b = ¢ = d = 0. Since d&( ) #0,
(4.16) implies g =0 and hence A = 0. We obtain the Lie
algebra {d,,6( y)d,,¥( y)3d,} where 1, ¢, and ¢ are linearly
independent.

(ii) Decomposable non-Abelian algebras: We take
a=b=c=0,d= 1. Equation (4.17) implies g = Ay + v.
If A =v =0 we reobtain the Abelian algebra considered
above. Hence we have g(y)#0 and we can put
H= — yg~'. Two cases arise, namely, the Lie algebra
{8, y°9,, — (1/p)yd,} if A #£0 (we have putp= — 1 ')
and {9,,’d,, — 3,}if A=0(weputp= —v7').

(iii) Nilpotent algebras: We have a=b=d =0 and
¢ = 1. Equation (4.17) implies g = Ay + p and (4.16) tells
us that A = ¢ = 0 is excluded. Integrating (4.16) for A #0
and for A =0, u#0 we get two nilpotent algebras that are
not new: they have appeared above in cases (a) and (b)
respectively.

(iv) Algebras of type A5,: We havea=1, b=c=0,
d=a, 0<|a|<]1. From (4.16) and (4.17) we find

g=UA—-1y+pu [A-Dy+uld=(1-a)d
For A=1 pu=0, a=1 we obtain the algebra
{3.,6(3)3,,xd .}, A #1,a = 1isnot allowed; 4 #1, a#1
yields {3,.p93,.,xd, + [(1 —a)/plyd,} with p#£0. It is
possible to transform pinto — p(p + 1) ~7, hence we restrict
to —2<p<0. Finally A=1 u#0 leads to
{0,,€9,,x3, + (1 —a)yd, }.

(v) Algebras of type A;;: In this case a=c=d =1,
b = 0. Solving (4.16) we again haveg = (4 — 1)y + . For
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A #1 we obtain {3,,[1/(1 —a)1In p3,.x3, + (a — 1)yd,,
a#1}, for A =1, u#0 we find another algebra, namely,
{0,,y9,,xd, —4,}.

This completes the enumeration of all conjugacy classes
of three-dimensional solvable Lie subalgebras over C. To
complete this section let us now construct the simple three-
dimensional subalgebras of the considered algebra of holo-
morphic vector fields with constant divergence. According
to Lemma 3.4 all such algebras over C must be isomorphic to
s1(2,C).

2. The sl(2,C) subalgebras

We choose a basis {X,X,,X,} of s1(2,C) such that the
commutation relations are

(X . X,] =X, [X,X:]=X, [X3X,]=2X, (4.20)

We can assume that the subalgebra {X,,X,} is already in
standard form, namely L, , (C) or L §5 (C) of Table I. Since
sl(2,C) is simple its derived algebra equals the original
s1(2,C) algebra. It follows from Lemma 3.2 that we must
have div X, = 0, i = 1,2,3. Hence the only allowed 4, ; sub-
algebra as a candidate for {X,,X,}is L $5 ~'(C). We have

X,=4d,, X,=xd, —}’ay,

X;=fix, y)d, +8(x,3)8,, f.+8g,=0. (4.21)
Imposing the commutation relations (4.20) we find

f=—x+a/y’, g=2xp+p, (4.22)

where a and B are constants. Transformations with constant
Jacobian determinant leaving the subalgebra {X,,X,} invar-
iant are
E=rx+s/y—p,
Using (4.23) to simplify (4.21) and (4.22) we find that two

cases must be distinguished. For @ = #2/4 in (4.22) we can
transform X; into

n=qy,
r,s,p,q = const.

X;= —x*d, +2xyd,, (4.24)
where @ #£%/4 and we can transform X, into
X,=(—x"+1/y)3, +2xyd,. (4.25)

An alternative form of these two sl (2,C) algebras is obtained
by a coordinate transformation

x=v/u, y=u (4.26)

The resulting representatives of conjugacy classes of s1(2,C)
algebras are

X, =ud,,
and

X, =ud,, X,= (= ud, + vd,),

X; = (1/u)3, +vd,. (4.28)

‘The classification of three-dimensional subalgebras
over C is summarized in Table II. In the first column we list
the isomorphism class of each subalgebra, following Lemma
3.4. For solvable algebras, namely, L, ,....L; 4, {X;,X,} isan
Abelian ideal. This ideal is uniquely defined in all isomor-

phism classes except 34, and 45, (Abelian and nilpotent,
respectively). For solvable algebras we also give the matrix

X,=4(—ud, +vd,), Xy= —vd,, (427)
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TABLE I1. Three-dimensional complex subalgebras.

Basis
Type N, X, X, X, M divX divX, dim¥V dimV,
L5 0 0
34, LI 3, LH(N3, £(»)4, 0 o 0 0 1 1
(1, fi, /3 linearly
independent)
0 O
A oA, L,,(C) a, a, ¥, (0 ]) Hs 0 2 2
A4, = {szxs} 0 0
L,;(C) »a, a, xd, (0 1) e+ s ™ 2 2
0 0
L5,(C) (a#0) 4, y°3, — (1/a)yd, (0 1) — (VVa)u, 0 2 1
L,;5(C) a, e=’d, 3, (g (])) 0 0 2 1
Ay, Lyy(©) a, 3, », 9 0 0 2 2
0 0
L,;(©) s Inya, 9 e w2 2
o « t O
A5, L$,(0) a, 4, xd, + ayd, (0 a) Lyl +a) 0 2 2
0<la|kl
1 0
LE(C) a, ¥, < +l0-amd, () Y) mita-am o 2 !
—2p<0, a#l
L$o(©) (a#l) 4, ed, wa+a-ws, (5 ) s 0 2 i
; 10
Ls,n (C) a, Ay, xd, 0 1 I75 0 1 1
Ay #0
1 ¢
4, L, (€) 9, 3, wena -+, (1) 2us 0 2 2
L3,(0) (a#0) 3,  alnyd, xd, — (1/a)y0, (I 9 — (WVaw, 0 2 1
1 0
L;;(C) 9, »a, xd, — 0, 11 iy 0 2 1
A;35,(s1(2,0)) L3,lS Q) xay (- xd, +yay) -y, 0 0 2
L, (C) xd, I —xd,+yd,) x~%3, + yd, 0 0 2

M of Lemma 3.4 in the fourth column. In the last columns
X =33_,u,X, is a general element of the Lie algebra, X,
= Ef, _14;X; a general element of the ideal, ¥ is the vector
space spanned by elements of the Lie algebra at a generic
point (x, y), V, the vector space spanned by elements of the
ideal at a generic point.

TABLE III. One-dimensional real subalgebras.

We have arrived at the following theorem.

Theorem 4.3: Every complex three-dimensional subal-
gebra of the algebra T 'is conjugate under the pseudogroup P
to an algebra in Table III. Two algebras in Table III are
mutually conjugate precisely in one of the two following
cases:

Complex divX
N, Basis element X *® form divx*® (peR,A,,H(y)eC) Normalizer in P
L, Ry i3,—6» L{, 0 0 E=px+ H(y), =2y +u, Ap#0
L,®) i(xd, — xd) LY, 0 #0 §=/11"1“'(y)x,17=H(y),1f1(y);é0
Li,(0) xd, + Xd; + ia(xd, —X3;) L,(C) #0 #0 é’:/lH—'(y)x,q=H(y),H(y) #0
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LEF(C)~L§E(0),
if {1,f,/5} and {1, g,, g,} are equivalent under relation
(4.8),

L%, (C)~L%,, (0),
if {1, f} and {1, g} are equivalent under (4.8).

V. CLASSIFICATION OF LOW-DIMENSIONAL REAL
SUBALGEBRAS

We are interested in algebras of vector fields of the form
(3.3) satisfying div X = const, i.e., the divergence of the
complexification of X ® is constant. We proceed as in the
complex case, remembering that the ground field now is R
rather than C. Whenever possible we make use of the results
of Sec. IV.

A. One-dimensional real subalgebras

Starting with a vector field X in the form (3.4), we
perform the general transformation (3.5), taking X into
(3.7). The choice (4.1) takes X into (4.2) and hence X ®into

XR= — (Jg/G); — (J,8/G,);. (5.1)
Requiring that the divergence be constant we obtain
divX= — (Jg/G,): — J/Glz=a+a (52)

Differentiating with respect to £ we obtain ( — Jog/G, )
= 0 and hence

The vector field X ® in the coordinates (£,7) now is
X% = (af +B)d; + (@ + B)d;. (5.4)

We can multiply X ® by an arbitrary nonzero real constant
and also translate £. We find three different classes, corre-
sponding to @ = 0, a pure imaginary and Re a #0, respec-
tively. We thus arrive at the following result.

Theorem 5.1: An arbitrary one-dimensional real subal-
gebra {X X} of the Lie algebra T of constant divergence holo-
morphic vector fields is conjugate under the pseudogroup P
to precisely one of the algebras in Table 1II. a

The value of @ in L { ; (R) is invariant under P, since we
‘have div X = 1 + ia and Theorem 3.1 tells us that the diver-
gence of a vector field X is not changed by holomorphic
transformations with constant Jacobian determinant.

We shall need the normalizers of the one-dimensional
subalgebras in P, i.e., the transformations (3.5) leaving L, ;
(i = 1,2,3) invariant. They are easy to calculate and are giv-
en in the sixth column of Table III. In the third column we
give the complex Lie algebra, generated by X (rather than
xRy,

B. Two-dimensional real subalgebras

Similarly as in the complex case, we shall assume that
one element, X ¥, is already in its standard form, namely one
given in Table I1I. The other basis element X ¥ is in the gen-
eral form (3.3). We first impose the commutation relation,
then simplify X %, using the normalizer of X ¥ in P (given in
the sixth column of Table III).
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1. Abelian subalgebras
(A) X{=i(d, —3%). Requiring [XT,X5] =0 and
using Nor, L, ; (R), we obtain
X ={fyp+H ) (a/D)(y—p) +B1}5,
+ lay —pa+BA 10, +cc, (5.5)

where f( y), a, and B are given and p, A, u, and H( y) are our
choices. Depending on the original values of a, 8, and f( y),
the following possibilities occur:

(4,) X£=yd, + 33, + ia( y3, — 33;),

(4,) X3 =i(yd, —39;),

(X3) X3 =1i(3, — ),

(X,) X2=0a,+9;,

(X5) XF=f()3, + APz, f(y)#O0.

(B) X =i(xd, — Xd5). Requiring [X {,X§] =0 us-
ing Nor,(L, , (R)) we obtain

XE¥=1[a—g(y) — [G(»)/G(3]g(»]x3,

+8G(»)d, + cc., (5.6)

where a and g( y) are given and G( y) is our choice. Two
possibilities occur, namely, g( y)#0and g( y) =0,

(Bs) XR2=yd, +73,,
(B,) X¥=xd, + x0;.
(C) X =xd, + Xd; + ia(xd, — X3 ). Proceeding as
above we obtain
X5=1[ib—-g(y) — (&/G)G 1xd,
+8(»)Gd, + c.c. (5.7)

For g#0, b #0 we obtain an algebra conjugate to B,. For
g#0, b = 0 we obtain an algebra conjugate to 4,. Forg =0
we reobtain B,.

2. Non-Abelian subalgebras

Since the vector fields X, and X, satisfy [X,,X,] = X, it
follows from Lemma 3.2 that div X = 0. Hence we can al-
ways put

XR=1i(d, —3s).

Using the commutation relation and the normalizer
Nor, L,, we obtain

XB=[x—H(p) +ph+([(ay—p)/A]1 +B)H 3,

+ (ay,u + BA)I, +c.c. (5.8)

Here A( y), @, and B are given, p, 4, u, and H( y) are our
choices. We distinguish three cases, namely, a =0, £ #0;
a =0, =0; and a#0. We obtain

(Dg) X5 =xd, + X3z +i(8, — ),
(Dg) X% =xd, + x0;,
(Dyy) X5 =x0, +Xd; + a( yd, + y3;)
+lb( yay _Pay)’ (a,b);é(0,0).
For each algebra L,, (k=1,...,10), we calculate its
normalizer Nor, L, , (R) in the pseudogroup P. All results
are summarized in Table IV. In the fourth column we give
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TABLE 1V. Two-dimensional real subalgebras.

Basis div X
Type N, Xt X¥ Complexification X=pX +pX, Nor,L, ,(R)
24, L, (R) =4, (9, — d;) .+ L,,(C) 0 E=Ax+ H(y), n=pp+v Ap#0
L,,(R)=258, i(xd, — %d;) xd, + X0 L,,(C) ip+p E=[A/HM)x,n= H(y),,lil(y) #0
L,3(R) = 4, 0, — d) ia,—a) L, (©) 0 S=pxtp+Adn=rx+sp+v,
ps— gr#£0
L. (R) =4, 9, — d) iyd, —3d;) L,,(C) ip, §=px+qhny+p n=Ay,pl#0
Lis(R) =4, (9, — d3) Y8, + 365 + ia(pd, —335) L,,(C) (1 + ia)p, E=px+ {ig/(1 +ia)]iny + p, = Ay, pA #£0
L (Ry=B,  i(xd, ~%d;) 3, + 33, L, (©) ip+p2 E=ax,1=Py,aB#0
Li,(R) =4y i3, — &) S8, + A7 L{;(C) 0 £=[a/HP)x + K(p), 1= H(p), aH(») #£0
J+o BN THD ]+ (= afty) + 8 LH )
+ic=0,a6—Bc=0
A, L,s(R) =D, (8, — %) xd, + %0, +i(d, — &) L, (C) I E=px+Ae” ¥ +ir,n=yp+u, p#0
L,s(R) =D, i3, — ) X3, + X, L35(C) P E=px+q 1=Ax+u pA #£0
L% (Ry=D,y, i3, — 3z) x3d, + X35 + a(yd, + ¥3;) L31™C) Pl +a+ib) E=x+puylp/(a+ib)] —ig, n=Ap, A £0
(a,6) #(0,0) + ib(yd, — 33;)
the corresponding complex algebra of Table 1. The normal- ¢c= —b, d=a, (5.12)

izers are in the sixth column.

We arrive at the following statement.

Theorem 5.2: Every two-dimensional real subalgebra of
the Lie algebra T of constant divergence holomorphic vector
fields is conjugate under the pseudogroup P to an algebra in
Table IV. Two algebras in Table IV are mutually conjugate if
and only if they are of the type L4 , (R) and L, (R), where
{1, ()} and {1,g( y)} are equivalent under the relation
(4.8).

Notice that a complication occurs for the algebras
L%, (R): The function H( y) in the normalizer (see Table
1V) satisfies a functional relation

BANFHY)+{—aftp) + 8 [H( ]} +ic=0.
(5.9)

Thus four numbers a, ceR, B, 6€C, satisfying ad — fc#0
must exist, such that H( y) satisfies (5.9).

C. Three-dimensional real subalgebras

As in the case of complex three-dimensional subalge-
bras, we start with the solvable ones and assume that their
two-dimensional Abelian ideal {X ¥, X ¥} is in one of the
standard forms L, ;(R) (i=1,...,7) of Table IV. We take
X %in the general form (3.4). We first impose the commuta-
tion relations

[XT.X5] a b\ [(XF
([Xf,Xé‘] X(c d) XR)’ a,bcdeR,  (5.10)

and then simplify X ¥ using the appropriate normalizer
Nor, L, (R), listed in the sixth column of Table IV.

1. Solvable subalgebras

(A) Ideal L, , (R). Implementing the commutation re-
lations (5.10) in this case we find

X{=[(a+ib)x+ $(»)]d, + (ay + B), + c.c.
(5.11)

and moreover
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in (5.9). Using the normalizer Nor, (R) we transform X Rto
X¥={(a+ib)é+ [(an—av+Bu) (H/u)
— (a —ib)H + A¢1}d,
+ (an —av 4+ Bu)d, +cc, (5.13)

where 4, u, v, and H( y) can be chosen at will (Au#0).
The following possibilities occur. (i) Abelian algebras:
a=b=0.

(4)) X5=y3, +33; +ip(y3, —¥3;),
(4,) X5=i(yd, —73;),
(4;) X5=1id, —3;),
(4) $( D)3 + (3, $()#0.
(ii) Algebras 4 3,:a=1,b=0.
(45) X5 =x3, +Xd; + i, — J;),
(4¢) X5 =x3, +X3; +p(¥3, +53;)
+ig( y3, — y35).
(iii) Algebras 45,: b= 1.
(4;) XR=a(xd, + %3;) + i(xd, — %3;)
+4d, + ;.
(Ag) X¥=a(xd, +%3;) + i(xd, — X3;)
+p(yd, +¥05) + ig( yd, — y3;).
(B) Ideal L, , (R). In view of Lemma 3.2 neither of the
operators {X §, X X}eL, , (R) can be in the derived algebra,

hence any algebra containing L, , as an ideal must be Abe-
lian. We find

X5 = —xg(»)3, +8(»d, +cc. (5.14)

A transformation in Nor, L,, (R) can be found, taking
(5.14) into
(By) XX=i3, —3;). (5.15)
(C) Ideal L, ; (R). For L, ; (R) to be an ideal X § must
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have coefficients that are linear in x and y. We find
Xf=(ax+cy+rd, + (bx+dy+s)d, +cc. (5.16)
The normalizer Nor, L, ; (R) is then used to transform the
matrix in (5.10) into its standard form. The following cases
occur: (i) Abelian algebras:a=b=c=d =0.

¥=rd, + ;) +5(3, + ;).

The corresponding algebra is conjugate under P to the alge-
bra A,. (ii) Decomposable algebras:a=1,b=c=d =0.
Depending on whether s = 0 or s#0, we obtain,

(Ch) X8 =x8, + %05,
(Cll) X§ =xax +ia§ +ay +aj;'

(iii) Nilpotent algebras:a = b = d = 0,c = 1. Two cases oc-
cur:

(Ciy) X5 =y9, + s,
(Ci3) X§ =yd, + yos +ay + a;-
(iv) 4%, algebras:a =1, d=a,b=c=0.
(Ci) X5 =2xd, + X0z +p(y3, +73;),
— 1gpgl, p#0.
(v) 4,5 algebras:a=c=d=1,b=0.
(Cis) X5¥=(x+y)3, + (X +7)3% +yd, +73;.
(vi) A4, algebrasia=d =p, b= —c=1.
(Cie) X§=p(xd, + X35 +y3, + 735)
—yd, + xd, — yd; + Xd;.
(D) Ideal L,,(R). Imposing the usual commutation

relations and performing a transformation by the normalizer
of L, ; (R), we find

X;=lax+ ( —aB + ca)n( y/8) — ay + Bg + pa1d,

+qyd, +c.c. (5.17)

where a, ¢, p, geR are given and a, B, ¥, 6 are our choice.
Notice that we have 6 =d =0 in (5.10), since div X,#0
(Lemma 3.2).

The following possibilities occur: (i) Abelian algebra:
a = ¢ = 0. We must have g7#0; we choose f = — pa/q and
reobtain the algebra B, corresponding to X ¥°’ and the ideal
L,, (R). (ii) Decomposable algebra: a = 1. Choosing S and
¥ appropriately we obtain

(Dy) X§U7 =x0, + X3z + p(yd, + y95).

(iii) Nilpotent algebras: a = 0, c = 1. We obtain, for ¢#0
and g = 0, respectively,

(Dyg) X§'® =1Inyd, +Inyd; + (¥, +¥35).
Dy X8 =Inyd, + Inyd;.
(E) Ideal L4 (R). In this case div X, = (1 + ip) #0,

hence X, cannot be in the derived algebra and we have
b = d = 0in the matrix M of (5.10). From (5.10) we obtain

XR=(ax+ lic/(1 +ip)]lny +r)d,
+ isyd, +c.c., (5.18)
Using the normalizer Nor, L4, (R) we transform X § into

a,c,r,s,peR.
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X®={a& + [i/(1 4+ ip)]1( — ab, + cb,)In(7n/B)

— aa + rby — b,s/(1 + ip) Y9, + isnd, + c.c.,
where b,,b,€R and a,BeC are at our disposal (5,8 %0). The
following cases occur: (i) Abelian algebras: a =¢ =0. If
s#0 we obtain an algebra conjugate to B,, if s = 0 we reob-
tain 4,. (ii) Decomposable algebras:a = 1,¢ = 0. We obtain
one new algebra

Ey: X§=x9, + X095 + is( yd, —33;).
(iii) Nilpotent algebras: a = 0, ¢ = 1. For s = 0 we obtain a
new algebra
E,: X¥=[i/(1 +ip)]Inyd, — [i/(1 —ip)]In JJ;.
For s#0 we obtain the algebra
Xt=id,—3d%), X5F=1+ia)yd, +cc,

X¥=1iyd, + [i/(1 + ip)|Inyd, + c.c. (5.19)
Putting
X¥=i@, —3y),

X2=X%=iyd, + [i/(1 + ip))Inyd, + cc.,
XR=X2—pX%=yd, — [ip/(1 +ip)lInyd, +cc,
and transforming to new variables
E=x+H(y), n=y, with yH= —[1/(1+ip)]Iny,

we show that (5.19) is conjugate to Dg.

(F) Ideal L, ; (R). Since div X, #0, div X, #0any alge-
bra with L,,(R) as an ideal must be Abelian. Hence
a = b= c=d =0in (5.10). Imposing the commutation re-
lations, we obtain a simple algebra, conjugate to B,

(G) Ideal L¢, (R). The ideal in this case depends on an
arbitrary function that we shall here denote ¢( y); both X,
and X, can be present in the derived algebra. With no loss of
generality we can assume that the matrix M in (5.10) is
already in one of its standard forms. Imposing (5.10) we
find

X8=i(d, —dz), X§=¢(»)d. + (5,
XF={la—ibp(»)]x + ¥(»)}I, +g(y)d, +cc,
(5.20)
with

gb= —ibg*+ (a—d)p —ic, —ibd(y)+2(y)=0.

(5.21)

Rather than use the normalizer of L%, (R) in P, we use a
simpler transformation

§=X+H( _V),
that takes (5.20) into
XP=i(d; —3:), X5=4¢0+cc,

X5¥=[(a—ibp)¢ + ¢+ gH— (a—ibp)H 19, + Ag3,,.
(5.23)
In (5.23) we have actually put ¢( y) ={(ng—p)/
A) = ¢(7) and then dropped the ~ sign; the same holds for
¥( ), g( ) and the auxiliary function H( y) (all are now
considered as functions of 7). We now run through all possi-
ble types of algebras. In each case we must solve Egs. (5.21)
and then use H( y), A, and u to simplify the result. (i) Abe-

n=Ay+u, (5.22)
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lian algebras: a = b = ¢ = d = 0. We obtain one type of alge-
bra, namely

G22: X{( = l(ax - a}),

X§ =¢,(y)d, + ‘;l(;)a}’

X5 =608, + 6:( )35,
where 1, ¢,( y), and ¢,( y) are linearly independent. (ii)
Decomposable algebras:a = b= ¢ = 0,d = 1. From (5.21)
we find g = an + B. For a0 and a = 0, 8 #0, we obtain,
respectively,

Gy: XR=i(d, —35), X¥=y"9, + 50,
X3= — (1/a)yd, — (1/@)yd;.

G X =1(d, — ),

Xf=e70, +e773;, X§{=4,+9;.

(iii) Nilpotent algebra: a =b=d =0, ¢ = 1. From (5.21)
we again have g = an + f and again two cases occur: a #0
ora =0, #0,

X8=id, —3;), X,= —ilnyd, +ilnyd;,

X; =yod, +yo;
and

XR=id, —3:), X,=yd, +79;,

X,= —i(d, — ;).
Neither of these are new; the first coincides with a special
case of E,,, the second with C,,. (iv) Algebras 45,:a=1,

b=c=0,d=p, —1<p<], p#0. Standard calculations
lead to three new types of algebras, namely,

G5 X, =i(d, — 3z), X, =)0, + 705,
X, =x0d, + X3z + [(1 —p)/alyd,
+ [(1 —a)/alyd;, aecC, a#0,
G%: X, =i(d, —3d%), X,=¢€0,+ d;,
X;=xd, +X3; + (1-p)d, + (1 —p)J;,
G%: X, =i(3, —33), Xo=¢(p)3, + ()35,
X,=x9, +%3;, p=1, ¢(y)#O0.
(v) Algebras 4;;: a=¢c=d =1, b=0. Since b =0 we

have g( y) = Ay + pu from (5.21). Depending on whether
A =0or A #0, we obtain one of the following algebras:

G%: X, =i(d, — ),
X, =(— (i/D)ny)d, + ((i/A)Iny)d;,
X, = x3, + X3, + Ayd, + Ayd;, A #0,
Gro: X, =1i(9, — 85), X,=i(yd, —335),
X; =xd, +%3; — 9, — ;.

(vi) Algebras45,:d =a,b = — c = 1. In this case the first
of Egs. (5.21) is nonlinear and difficult to solve. To avoid
solving it we first diagonalize the matrix M = (°_, }) over
the field of complex numbers, solve (5.21) for that case, then
transform back. This leads to two algebras, namely,
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G XR=(i+p""a, + (—i+7~ "o,
XF=Q+ N3, + (1 =iy~ "o,
X¥=a(xd, + xd;) + i(xd, — %d;)

+ Ayd, + A33;,
and
Gyy: X§=1i(9, —3;),

— 2iy 2iy
Xzz(l_ie_)ax+(l+e A )a;,,

l_e—2iy 1__e2:y
— 2iy
X:If:(a_i_lL)xax
1—e 2%
147\ _ .
+(a+ — Ziy)xaﬁ-:(ay_a;).

Theideal {X ®,X £} in the case G, is not in its standard form
L?%,(R). A transformation taking it into its standard form
exists, but we have not constructed it explicitly.

The results obtained so far are summarized in Table V
where the subalgebras are listed by isomorphism classes. The
algebras L;, (R), L §;(R), and L, ,(R) all have the same
complexification, namely the two-dimensional algebra
L,, (C). However, they are not conjugate to each other. In-
deed, putting X = =}_ | p, X, wefinddiv X = ip;in L, (R),
divX= (1 +ia)p; in Ly3(R) and divX=p, +ip, in
L;,(R). For the algebras 4, , (nilpotent) we have weeded
out all redundancies, due to the fact that in this case the
Abelian ideal is not unique. In all other cases the Abelian
ideal is unique. Once it is fixed, the only allowed transforma-
tions are in the normalizer of the ideal and these were used to
the maximal possible degree in the text.

2. Simple subalgebras

Let us now turn to the simple three-dimensional real
subalgebras of the algebra of holomorphic vector fields with
constant divergence. Upon complexification such an algebra
will turn into s1(2,C), i.e., into either L, ;5 (C) or L; ;, (C) of
Table I1. We shall rewrite these two algebras as the real alge-
bras 0(3,1) and then pick out the corresponding 0(3) and
0(2,1) subalgebras [unique up to conjugacy under the corre-
sponding o(3,1) group].

We start with the “linear” s1(2,C) algebra L, 5 (C). Its
0(3,1) realization is represented by

Ly = (i/2)[ +x3, — yd, — %35 + 33, ],

L, = (i/2)[ —xd, — yd, + Xd; + ¥d; ],

Ly={[xd, —yd, + X35 — ¥ ],

K, =\[ —xd, +yd, — X0z +y5;],

K, =\[x0, + yd, + X35 + y; ],

Ky = (i/2)[xd, — y3, — %3, + 735 ]. (5.24)
The commutation relations are the standard ones, namely,

[LisLy ) = €Ly,

[Li!Kk] = €, K,

[KiKi] =

— €Ly (5.25)
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TABLE V. Three-dimensional real subalgebras.

Basis
Type N, Xt X} b ¢+ Complexification
34, L, (R)=4, i3, — &) 3.+ i3, — 3) L,,(C)
Ly, (R} = 4, {8, — &) 8, +6, i(yay —}3,) L,,{C)
Ly, (R) = 4, 3, —~ 3y) 9, + 3 8, + 33, + ia(yd, — $d5) L, (Q)
L,,(R)=B, X3, + X0y i(xd, — %) ia, — &) L,,(C)
L{;(R)=A, (J#0) i3, -3 d. +d S, + 703, Li,(©)
LifR) =Gy W3, ~ &) L9, +F1()d FAGI MUY AN LK)
(1, £, f2 linearly
independent)
A, 04, L, (Ry=Cyq 8, — &) {3, ~8,) »3, + 33, L,,(C)
A4, ={x8X}} L, (R)=C, i3, — &) i3, —3) 8, +93,+ 3, + 8 L,,(C)
L3,(C) =Dy, i(yd, — ydy) (3, — ) x3, + X0 + a(yd, + y3;) L3 ()
L3 (R) = Ey 9, + 36; + ia(yd, — 33,) i3, — &) X3, + 0y + ib(38, — 33;) L,,(C)
L5 (R) =Gy, (a#0) i3, —~ &) YO + 7o - (1/e)yd, — (1/@)53, L5.(C)
L, (R) =Gy i3, —d3) _ e, +e7 73, 3,+8 L,,(C)
A),x Ls,u(R) = Cn i(ax ‘ax) i(a,—ay) yax +;ai L,_‘,(C)
L ARY=C;3 (9, — 35 i3, ~ ) ¥o, + 30, + 3,43 L, (©)
L;,s(R) =Dy i(d, — 3) i(ya, —¥é) In y3, + Inyd, L,,(C)
Ly o (R) =Dy i3, - &) (3, —y3;) In yd, +Inyd; + y3, + yd; L,,(C)
L3,(R)=E, i3, — 3) 28, + 76, + ia(yd, — 76;) [i/(1 + ia))n yd, — [i/(1 — ia)JIn 3, L,,(C)
A3, L z(R)=45(a=1) (3, —3) 9, +05 xd, + x3; + i3, — &) L, (C)
- I<agt
a#0
Ly o (R)=Ag, (a=1) {3, —dp) d. + x0, + X0y + p(»9, +33) + ig(yd, —38,) Lz,(C)
L3 (R)=Cy, i, — & i(8, — &) xd, + X3 + a(p9d, + 3d;) L3:(C)
L5 (R) = Gy, (a£0) i3, — 6;) Yo, + 7% xd, +%; + [(1 —a)/a)d, + [(1 — a)/G] 5, L3is©
L3, (R) =Gy, (9, — ) e’d, + €73, x3, +% + (1-a)d, + (1—a)3, L$,(C)
L{,(R) = G4, i3, — 3} A8, + A8, X3, + X3, L (€
Ay LW(Ry=C id, — ;) 8, — &) (x+ )9, + (X+ 76 + 39, + 39, L, (C)
L%y (R) = Gy 8, — ) { - (i/a)n y)3, + (/D) 5)d, X3, + X0, + ayd, + ayd, L%,,(0)
L5, (R)=Gyp i(3, — 63) i Y3, — ¥3;) X0, + X0, — 8, - 3 Ly, (C)
A5, L; 5 (R) =47 i3, — &) d,+ (@+ 0)xd, + (a — D05 + 9, + &; L, ()
OKa<
L3R =43 43, — &) 3, +d (a4 Dxd, + (b+ic)pd; + c.c. L2,(C)
Li(Ry=C;, #D, — ) #9,— ) a(xd, + y3;) — yI, + X8, + ¢c<. L3 (O)
L34 (R)=G%, (A#0) (i+p""3, +cc. (1+ YN8, +ce. (a+ Dxd, + Ayd, +cc. L3,(C)
Ly (R) =G5 i(d, — 85) [(1+e /(1 —e"™)]8, +cc. {a+ (1 +e /(1 — e ™))xd, +cc. L$,(C)
Ass L, (R) (= x3, +y3, +cc) 1(x8, + yd, + c.c.) §(x3, — yd, +c.c.) Lis(C)
(s12.R))
L,y (R) W(xd, - pd, +¢c.) {[(x+ 1/x")3, + y3, + cc.] A(—x+ 1/x)3, + ¥9, +cc.] L((€)
Ay Ly, (R (/D) — x3, +y3,) 3 cc. (i/2)(x8, + y8,) + c.c. 3(x8, — ¥9, +c.c.) L,(C)
{su(2))
Ly, (R) (i/2)(xd, — y8,) + c.c. (i/2)[(x+ 1/x)9, + y3,] + cc. M —x+1/x)8, + y9, +cc.] L,,(C)

The 0(3,1) realization of L, ,, (C) is

Ly=4[(—x+1/x*)d, + yd,

+ (=% — 1/%)3; + 73 ],
L, = (i/2)[ — x3, +yd, + X3z —¥3;],
Ly=}[ — (x+ 1/x*)d, — yd,

+ (X + 1/3)3; + ¥3% ],
K, =1[(—x+1/x°)3,

+yd, — (— X%+ 1/%*)3; — 595 ],
K, =1[x3, —yd, + X35 —¥3;],
K, =1[(x+ 1/x*)d, + yd,

4 (—%—1/2)d5 + 57651, (5.26)
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and the commutation relations are again (5.25). We thus
obtain two different o(3) [or su(2)] algebras, namely L,,
L,, and L, in both cases. Convenient choices of the 0(2,1)
[i.e., s(2,R)] subalgebras are {K,,K,,L,} in the first case
and {K,,K;,L,} in the second. Four further real subalgebras
are thus obtained and they are included in Table V.

V1. CONCLUSIONS AND PREVIEW OF FUTURE
ATTRACTIONS

The main results of this paper are sammed up in Tables
ITI-V providing representatives of the conjugacy classes of
one-, two-, and three-dimensional real/ subalgebras of the
algebra of holomorphic vector fields in two complex vari-
ables, having constant divergence. The classification is per-
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formed under the pseudogroup P of biholomorphic transfor-
mations with constant Jacobian determinant.

The stage is now set for performing the actual symmetry
reduction of the ) equation and obtaining solutions and
metrics. To give an example of the type of application we
have in mind, consider the subalgebra L, , (R) of Table V.

Calculating its invariants in a standard manner”®>* we find
the expression
Q3 9,5) =VxXF(§), E=y+7. (6.1)

Substituting into the Q equation (*) we obtain an equation
for F(&),
FF-F*=a, (6.2)

This nonlinear ordinary differential equation is invariant un-
der translations and dilations, and can hence easily be
solved. Substituting the solution back into (6.1), we obtain

Q = (1/KJxx)cosh 2K(y +y — ¢), (6.3)

where K and c are integration constants. From this expres-
sion for £} we obtain the metric tensor

ds? = cosh( y + P)((1/4/x% )dx dX + xX dy dy)

+ sinh( y + 34 (X/x) dx dF + IV (x/X) d% dy).
(6.4)

A straightforward curvature computation shows that
this is the flat metric on R*. In Part II we shall use all ob-
tained subalgebras in a similar manner and describe the met-
rics obtained. For example the su(2) algebra L, ;, (R) gives
the well-known Eguchi—-Hanson metric.
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An exact solution of Einstein’s equations in a vacuum (outside of singularities ), belonging to
Kundt’s class and Petrov type N, is interpreted as the metric of a spinning pencil of light (a
linear source infinitely extended in one direction and moving with the speed of light). It is
shown that the gravitational fields of two parallel pencils of light do not interact with each
other, i.e., the superposition of the metrics of two parallel pencils of light is an exact solution of

Einstein’s equations in a vacuum.

1. INTRODUCTION

An approximate (weak field) metric for a pencil of light
was first found by Tolman ez al.! in 1934. They discovered a
remarkable property of this metric, namely that the field of
two parallel (not antiparallel) pencils of light when added
together give a solution of Einstein’s equations in the same
approximation, i.e., they do not interact. One of us noticed
recently that a special case of the Peres gravitational wave
should be interpreted as an exact solution for the gravitation-
al field of a pencil of light.? The fields of two parallel pencils
of light have the property of exact superposition. But since
these are vacuum solutions outside of singularities, how
could one infer that the source represents a pencil of light?

We define a pencil of light as a linear flow of energy
propagating along itself with the speed of light, thus not nec-
essarily connected with a real beam of light, especially if one
is talking about an infinitesimally thin pencil of light. The
most characteristic property of a pencil of light is that its
linear energy density is equal to the absolute value of its
linear momentum density. We show this explicitly for the
case of the Peres wave using Einstein’s equations. Another
way to come to a physical interpretation of the gravitational
field under question is to consider the action of this field on
test particles and if possible, the interaction of two or more
identical sources. This action can be interpreted in some
cases as a dragging phenomenon since it is due to the fact
that the source’s motion cannot be transformed away be-
cause it corresponds to the fundamental velocity {or in oth-
er, more conventional cases, to a rotational motion of the
source, e.g., in the Kerr field).

In this paper we consider the possibility of the combina-
tion of both the luminal and rotational motions. An ex-
tended thin rectilinear source of this kind is a spinning pencil
of light (SPL). A strange property of this source emerges: no
SPL can exist if its angular momentum (spin) does not de-
pend on the retarded time (i.e., on time and the coordinate
along the symmetry axis z). The property of superposition
continues to exist and an interplay of dragging effects occurs.
The general metric (solution I) of a SPL is of Petrov type N
and it belongs to Kundt’s class (see Ref. 3), but we prefer to
derive it here in some detail, especially since the identifica-
tion of the metrics is not easy. As a by-product we come to
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solution II (of type II or D if two arbitrary functions van-
ish). In Sec. II we review the results of Ref. 2 concerning the
stationary Peres wave as a pencil of light field. We give the
derivation of solutions I and II in Sec. III. We study the
effects due to dragging in Sec. IV, the superposition of met-
rics in Sec. V, and in Sec. VI we summarize the reasons for
interpreting solution I as the gravitational field of a SPL.

I. PERES WAVE AS A FIELD OF A PENCIL OF LIGHT
(REF. 2)

The metric of a Peres wave* is
ds* = Ny AX* dx¥ — 2H [dt — dz]?,
where the Minkowski metric can be written as

Ny dX* dx” =dt* — dx* —dy* — d7°
=dt> —dp® — p*dp? — d2?

(2.1)

and
H=H(t - z;p;)

is an arbitrary function of the retarded time ¢ — z satisfying
the two-dimensional flat space Laplace equation

d’H 1 JdH 1 9%H
= 2 — — + —2 2 = 0
dp° p dp p*op
(except at singular points or lines). We shall consider the
simplest case of the metric (2.1) when
H= — (k/2)In op. (2.2)

In order to determine the physical meaning of the constant &
we use one of Einstein’s equations, namely,

R0y =180y R = —xT5,(0)»

where T4, 0, = € (the energy density) in an orthonormal-
ized frame. We take for the latter

0 =dx* — HI*(dt — dz),
1°d, =0,+9,, I,dx*=dr—dz,
L1e=0,
Then it can be found® that in this frame
Rayp = HII®) o5+ (HIgl?) ., — H(l 1) ..,

AH
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sothatif H, = H, = 0,infact when dH /d(t + z) = 0, then
we have R =0,

_ oT
Ry = —Hym

~GEran)®
= A,H.
Hence
€= (1/%)AH= (k/2x)A, Inop
= (wk/%)8(x)6(p).
Taking
€ = €,6(x)8(p),
where € is the linear density on the z axis, we find finally
(2.3)

with ¥ being the Newtonian gravitational constant. Similar
consideration gives the same value for the momentum den-
sity in the z direction, thus meaning that the source of the
Peres wave field is moving in the positive z direction with the
speed of light. This is the reason why the source should be
understood as an example of the pencil of light.

The Peres wave is indeed a stationary object, not a gravi-
tational wave, but a field of a stationary pencil of light. It has
no horizon, but the whole space-time has a property of the
ergosphere: the field is only locally stationary (as it is for the
case of the Kerr field in the ergosphere) since the Killing
vector d, is timelike only if H <. At the same time another
Killing vector d, is spacelike only if H> — 1, and we have
the conventional definition of cylindrical symmetry only in
the band — } < H <}. However, we can combine d, and a,
and get Killing vectors that are good in shifted bands of the
values of H. This corresponds to a coordinate transforma-
tion

t=(1-L)t' + Lz,

z= —Lt'+ (1+ L)z,

which leads to

k = €ge/m = 8ye,,

H'= —4ye,In o'p,
with ¢’ corresponding to
L= —4ye,In(a'/o),

as it should be for a locally stationary space-time. This trans-
formation of coordinates is unnecessary if one takes retarded
and advanced time coordinates lying always on the light
cone. In this case the field of a pencil of light (or of the Peres
wave which is no wave whatsoever) becomes

ds® =2 dv(du — 2H) — dp* — p* dp?,

where v = (1/y2) (¢ —z) and u = (1/42) (¢ + 2).
Another approach to the interpretation of the Peres
wave as the field of a pencil of light is connected with the
dragging phenomenon. Dragging is a general property of all
stationary gravitational fields, and it reflects their nature
similar to that of magnetic fields. Therefore we call them
quasimagnetic fields. Dragging occurs when the source of
the gravitational field performs such a motion that it cannot
be globally (or even locally, as it is in our case) transformed

(2.4)
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away. No observer can indeed move with the speed of light.
The dragging manifests itself as a tendency of all test parti-
cles to accelerate in the direction of the pencil of light’s mo-
tion (in addition to the free fall acceleration onto the z axis).
We mean here under the acceleration of course not a nonzero
absolute (covariant) derivative, but only an ordinary one,
d?>s/dt?, where z and ¢ coordinates are determined by the
Killing congruences inside the above-mentioned band. The
proof of this statement is a particular case of a more general
consideration given below (see Sec. IV). It is worth men-
tioning here that only a photon moving along the pencil of
light in the same direction in which the energy of the pencil
propagates does not experience any change in its motion (it
does not even fall onto the singularity )—no interaction ex-
ists in this extreme case. This is most directly seen from the
fact that the one-form dv is both null and exact; thus it is
geodesic, being exactly the four-velocity form of such a pho-
ton. Similarly, since the field equation for H is linear, not

-only test photons but parallel (not antiparallel!) pencils of

light do not interact in an exact sense®; a generalization of
this observation is also discussed below (Sec. V). All these
conclusions are exact results corresponding to the approxi-
mate ones found already in 1931 by Tolman, Ehrenfest, and
Podolsky. !’

I1I. EINSTEIN’S EQUATIONS AND TWO FAMILIES OF
METRICS

In this section we give the derivation of the metric for
the gravitational field of a SPL. Simultaneously we obtain
another quite interesting metric. Our choice for the metric of
a gravitational field of a SPL is the following:

ds’ =2e* dv(du + Fdv + Gdp) — e dp” — p* dp*.
(3.1)

Here a, 3, F, and G are functions of the retarded time v and
the cylindrical radial coordinate p, the corresponding de-
rivatives being denoted by the dot and the prime. This metric
is a natural generalization of the metric (2.1) for a non-
spinning pencil of light, with a new term G dg which leads to
additional rotation of the covector field
(du + Fdv + G dg). When G = 0, the rotation was a mani-
festation of the source’s motion along the z axis (i.e., p = 0)
with the speed of light; now G #0, a rotation about the same
axis can be expected. As we shall see below, thisis exactly the
case.
A natural choice of the tetrad

0@ =e*dv, 0V =du+ Fdv+ Gdgp,

9(2)=ede’ 0(3)=pd¢), (3.2)
brings the metric (3.1) into the form

ds? =200 _gD2_ 932 (3.3)

In this basis the independent nonzero components of the
Riemann curvature tensor are

2 — 2
Royiyom = — (@' 2/4)e %,
Ry = (@/2)e “"P— (a'/2)Be 7,
) —2
Ry = — (G'a’/4p)e A,
Ry = — (@ +a' /2 —a'B'Y(e #/2),
N. V. Mitskievic and K. K. Kumaradtya 1096



Royoyoyy= — (F"—F'B' + F'a')e=¥-¢
—(G"*/4p") e~ P+ (B + B(B— a)le™*,
Ry = (@G+G—G'B—2G'/p)(e=*#/2p),

Ry = — (F'/ple= =P — (G'*/4p*)e 7,
Ry = —ae”*/2p,

Roymoa =(G"+3G'a’ —G'B'— G'/p)(e=*/2p),
Ry = — (B/pye™,

Royaavs = — (B'/pre™ .

Consequently we have the nontrivial components of the
Ricci tensor being

Royoy= —(F"—F'B'+ F'a’ + F'/ple%#~¢

+ (B + B*— aB)(e=2/2) — (G'¥/2p%)e %,
Row = — (@" +a'/2—aB' +a'/p)(e~*/2),
Ry = (&/2—a'B)(e™“"#/2) — (B/p)e™,
Roysy = —(G'a’ +G"/2—(G'/2)B’

— G'/2p)(e~*/p),
Raya =(a" —a'B'—B'/ple™ %,
Riy6) = (@ —B") (e /p).

However, since we are searching for a solution of Ein-
stein’s equations in a vacuum, all the components of the
Ricci tensor must be equal to zero. Solving this system of
differential equations we can find the functions «, B, F, and
G. 1t is easy to show that there exist two possible families of
exact solutions to these equations, forming together a gen-
eral vacuum solution for the metric (3.1):

Solution I:
ds* =2 dv(du + (kInop — } f*p*)dv + (g + fp*)dp)
—ptdp? —dp*. (3.4)
Solution II:
dst =2 zfv (du + (rngp — 1 d?*p®)dv
6 2, 2 dp’
+ (dp® + h)de) — pdyp —?. (3.5)

In both of the above solutions the functions k, g, £, 7, d,
and & are arbitrary functions of the variable v. Solutions I
and II can be simplified by transforming away the functions
f(v) and d(v), respectively. Taking d@ = dp — f(v)dv in
(3.4) we can write solution I as

ds* =2 dv(du + kn gp dv + g(v)dp ) — p* dp* — dp*.

Similarly using the transformation d@ = dg — d(v)dv, solu-
tion II can be written as

2dv dp®
ds2=7(du+klnapdv+hdcp)«pzdzpz—;—s—.

As to the algebraic classification of these solutions the
multiple principal null direction of the Weyl tensor is 8 *
for both solutions. This vector field forms a geodesic
nontwisting congruence without both expansion and shear.
Solution I is of Petrov type N and solution I1 is of Petrov type
I1; however when r = d = O, it degenerates into Petrov type
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D. All nontwisting and nonexpanding metrics of Petrov
types D and N are known (see, e.g., Ref. 3), while this is true
for only some metrics of type II. However, it is not easy at all
to put these metrics explicitly into the standard form of the
Kundt metrics to which they (including probably the solu-
tion II with  and d #0) belong.

IV. DRAGGING IN THE FIELD OF A PENCIL OF LIGHT

We shall now study the motion of test particles in the
field of solution I,

ds® =2 dv(du + k In gp dv 4 g dp) — dp* — p* dp>.

The motion of test particles possessing no interior degrees of
freedom is described by the geodesic equation, which can be
conveniently written as

4 (g 4)_ L, Gt
an & an ) T 2 8 T Tan
Here A is an affine parameter coinciding with the proper
time on its world line for a massive particle. Since the metric
coefficients do not depend on u and ¢, the corresponding
components of the equations (4.1) readily yield two first
integrals of motion,

4.1)

8ou @=A = const >0
ds
and
dvy dy
y — —~ = — B =const.
Eov s 80 s

The further integration of Egs. (4.1) cannot be always
performed exactly, and since we are not interested here in
any perturbation expansions, another way of dealing with
the dragging effect should be chosen. Let us consider only
the tendency of the test particle’s motion, i.e., the first non-
zero higher derivative of its spatial coordinates when the
initial state of motion is given. The initial state of motion is
most naturally chosen as a state of rest (if our test particle is
not massless). Then

(£),-(2)-2),-»

but the problem is how to express z through # and v. In
analogy with the Peres wave, we put here

z= (1/2)(u —v)
then

(), = (@),

Then from the two remaining components of Egs. (4.1) and
the two first integrals of motion, we have

(4.2)

dzp) —kA?
= , 4.
(dsz 0 P (4.3)
(dzz) _ —gd® A’kinop (44)
s’ Jo  2p? 2 '
d2¢) gA’?

= , 4.5
(ds2 o P’ 4

where the right-hand side quantities are taken at the initial

N. V. Mitskievic and K. K. Kumaradtya 1097



point of the test particle’s world line. In Sec. II we have seen
that k = 8y¢,>0 (the linear energy density of the source
must be positive), so that (4.2) describes an attraction of the
test particle to the pencil of light. The noncovariant “accel-
eration” in the directions of zand ¢, i.e., (4.4) and (4.5), can
be either positive or negative depending on the signs of g, £,
and k and the relationship between the two right-hand terms
in (4.4) (if we do not choose ¢ so that p, would correspond
to the middle of the — 1 < k < 1 band, cf. Sec. IT). The drag-
ging in the ¢ direction has the sign coinciding with that of g,
and this means that not the function g, but its first derivative
is directly connected with the angular momentum of the SPL
which is responsible for dragging in the ¢ direction. More-
over, if g was constant, it could be transformed away by
merely introducing % = u + gg, so that only g can have a
physical significance.

We consider now the motion of a lightlike particle. The
initial state of motion should be chosen now in a different
way since conditions (4.2) are incompatible with ds> = 0.
We shall take only the first two conditions of (4.2),

(ip_) _ (d_‘l’) —o. (4.6)
dA /o dA /o
Putting them into ds* we have
dv (du dv )
_— e k1l —_ = 0’
(dxl)o F7IR G TN
which leads to two possibilities
dv )
==} =0 4.7)
(d/l 0
and
du d
du __) —0 (4.8)
(d/l trEmor )

The first one is that which we have already mentioned in Sec.
I1. This geodesic corresponds to the first integral of motion
A =0. The alternative case (4.8) does not admit (dv/
dA)o = 0 since such a case would correspond to a world
point and not a world line. Combining the condition (4.8)
with the geodesic equation (including the first integrals of
motion), we come to the relations

(dzp) _ _kAz
di*/o ’

P
(d2¢) ___gA2
ditle  p*’
2 S A2
(_nj;;) = -8 iarmop.
0 p

These accelerations are in fact the same as in the case of a
massive test particle, though we have here u instead of z. We
see that a photon moving parallel to a SPL does not interact
with it (in particular it does not feel dragging in the ¢ direc-
tion), while a photon moving antiparallel to it both falls onto
the pencil of light and starts to rotate in the ¢ direction.

V. SUPERPOSITION OF METRICS

In the foregoing section we saw that a lightlike particle,
moving parallel to a pencil of light, does not interact with it.
The question that naturally arises is what happens when an-
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other pencil of light (a linear flow of the lightlike matter) is
moving paralle! to the first pencil of light. As we shall show
below, a most remarkable property of parallel pencils of light
is their additivity, i.e., parallel pencils of light do not interact
with each other.

The metric of a SPL moving along the z axis at the locus
p = 0 can be written as

ds* =2 dv(du+ kInop dv + gdp) — dp* — p* dop>.

{(5.1)

The metric of another SPL moving parallel to the z axis

at a distance a in the x direction takes the form

ds’ =2 dv|du +§231n 0,(p* + 2ap cos ¢ + a*)dv

g.asin @ dp
(0 + 2ap cos ¢ + a*)
g:(p* + pa cos @)
(p* + 2ap cos p + a?)

dcp] —dp’ —p*dp®.
(5.2)

Then it is natural to think that the superposition of two par-
allel pencils of light can be written as

ds* =2 dv[du + (k, Inop+ % In o,(p* + 2ap

g.asin ¢ dp
(p* + 2ap cos ¢ + a*)
8(p’ + pa cos @) ) ‘p]
(p* + 2ap cos @ + a?)
_ dpz _pz d¢ 2.

Xcos @ + a*)dv +

+(g,+

(5.3)
Using the following notation,
F=k inop+ (k/2) Ino,(p* + 2ap cos ¢ + a?),
8:(p* + pa cos @)
(p* +2apcosp+a?)’
_ g-a sin @
- (p*+2apcosg +a°)
we can rewrite the metric (5.3) as
ds’=2dv(du+ Fdu + Gdp + Hdp) — dp* — p* dp>.
The most simple tetrad is
09 =dv, 0V=du+ Fdv+ Gdp+ Hdp,
6 =dp, 0 =pdp.

Such a choice of the tetrad gives the following nontrivial
components of the Ricci tensor:

F F
Ry = — (Ep.p + ';p‘ + —:2,&)

(G ey )2 (G e’
2 W 2 ’

P P N2 2/

Ry = (G, —H,) /20

Roysy = — (G, —H,) /20 + (G, —H,)/20"

However, the substitution of (5.4) shows that

G=g, +

(5.4)

R 0)000 =R0y2y =Roy3y =0.
Consequently the metric (5.3) is an exact solution of Ein-
stein’s equations for a vacuum. It can be shown that such a
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conclusion is valid not only for two parallel pencils of light,
but for any number of parallel pencils of light.

VL. PHYSICAL INTERPRETATION OF SOLUTION |

We now summarize some results of this paper beginning
with solution I. Our main aim was to establish the physical
meaning of the cylindrically symmetric vacuum solutions of
Einstein’s equations that are traditionally interpreted as a
kind of gravitational wave (in particular, the Peres wave).
We consider the evidence presented here to be very convinc-
ing that these “waves” are in fact exterior gravitational fields
of pencils of light, i.e., of sources extended only in one direc-
tion and propagating in this direction with the speed of light.
Several reasons support this conclusion. First, both a light-
like particle and a pencil of light do not interact with a pencil
of light if they are moving in the same direction as the latter.
Here the “direction of motion” is given unambiguously by
the anisotropy of the mixed dt dz term in ds°, while such a
direction for a photon is obvious. Second, in the same direc-
tion the dragging effect acts on all massive test particles, and
this dragging cannot be transformed away by coordinate
transformations, thus proving the velocity of the source to be
the fundamental one. Third, an integration of the left-hand
side of Einstein’s equations shows that their right-hand side
contains for 7, and 7, (in the chosen tetrad basis) two-
dimensional delta-function terms along the z axis equal to
each other, so that the linear energy density of the source is
equal to the absolute value of its linear momentum density.
Our opinion is that the Petrov type N metrics (which is the
case here) admit either pure wave solutions (which is the
conventional interpretation of these metrics) or fields of
lightlike sources (which is the case under consideration).
And, finally, as early as 1931 Tolman et al.*’ found an ap-
proximate solution for the field of a pencil of light fully com-
patible with the simplest special case of the Peres wave, a fact
first previously noticed by one of us.? Along these lines we
also established that the parameter & in the metric (this pa-
rameter may also depend arbitrarily on the retarded time)
represents the linear energy density of the source (the pencil
of light).

We studied here in the realm of solution I more general
pencil of light metrics with spinning sources, thus leading to
an extra rotational dragging around the z axis. The two drag-
ging effects (the z and ¢ the ones) do mutually interact: it
can be shown that in the coordinates ¢, z, p, and ¢ (our
calculations were given in «, v, p, and ¢ coordinates) no
vacuum solutions of the symmetry under consideration and
the mixed dr dg and dt dz terms (but without dz dg) exist at
all. Another interesting fact is that the function g in ds’,
which is due to the source’s rotation, is not allowed to degen-
erate to a constant without making the rotation transforma-
ble away. This means that a pencil of light cannot spin with a
constant linear density of the angular momentum, which
should be evidently understood as a too strong influence of
the gravitational field of an infinitely extended linear homo-
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geneous source on the global geometry of space-time. One
could fancy here that a linearly homogeneous rotation of
such a source should lead, in accordance with Mach’s princi-
ple, to a rotation of the universe itself, but in contrast to, e.g.,
the Kerr metric where the rotation falls off quite quickly, in a
cylindrically symmetric case it behaves very differently and
even degenerates to a purely coordinate rotation (thus be-
coming transformable away). The noninteraction property
of two or more pencils of light (which move in one and the
same direction) is closely connected with the additivity of
their gravitational fields which we established here as (5.3).
It is worth mentioning that the resulting metric retains only
one Killing vector d, and becomes explicitly dependent on
@. These results hold when the pencil(s) of light is (are)
spinning. From here it is natural to infer that also a spinning
test photon should not interact with an arbitrarily spinning
pencil of light when their directions of propagation coincide.
The Papapetrou-Mathisson equation of motion for such a
photon® includes the curvature tensor, thus not reducing to
the geodesic equation in general, but in this special case such
a reduction is to be expected.

As to solution IT we did not consider it here closely.
However, it isimportant to note that when » = £ = Oin solu-
tion II, this metric coincides with that of Levi-Civita
(m = 2, see Eq. 20.8 in Ref. 3), though in nonstandard co-
ordinates. Thus the full metric solution Il is a generalization
of the Levi-Civita metric (for m = 2).
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For the Ernst equation, a hierachy of ansatz that generates determinantal solutions of the
Ernst equation is proposed. The ansatz is described explicitly in the inverse scattering
formalism and it is shown that the corresponding exact solutions are determinantal solutions
that have been constructed by Kyriakopoulos [Phys. Rev. D 30, 1158 (1984)] and Vein

[ Class. Quantum Gravit. 2, 899 (1985)].

I. INTRODUCTION

In this paper we consider determinantal solutions of the
Ernst equation, which are expressed in terms of cofactors of
particular matrices. Exact solutions discussed here have
been constructed by various methods. "> However, an ansatz
that produces these solutions has not been given. In the in-
verse scattering formalism, we present an explicit form of
ansatz E, for the Ernst equation and construct the corre-
sponding exact solutions by using Riemann—Hilbert trans-
form.

The Ernst equation* is a system of nonlinear differential
equations for two unknown functions f=f(z,p) and
e=e(zp):

SV = (3N~ (3N + (d,6)* + (3,6)> =0,
fV% —2(9,f3,e + 3,fd,e) =0,

in R,XR} where V>=92+ (1/p)d, +J. and
R," = {peR:p > 0}. This equation is closely related with the
SDYM equation. In the static axially symmetric case, the
Yang’s equation—the SDYM equation in the R gauge of
Yang—coincides with the Ernst equation.® This fact can be
used to generate solutions of the Ernst equation. Fortunately
a family of determinantal solutions of the Yang’s equation
have been constructed by ansatz due to Atiyah and Ward.%’
By using an explicit formula giving these solutions, Kyriako-
poulos’ has constructed a family of determinantal solutions.
The question arises as to how ansatz for the Ernst equation is
expressed in contrast to that of Atiyah-Ward for Yang’s
equation. This is the motivation for the present work. Our
ansatz E, has an expression similar to that of Atiyah-Ward.
It is known that the Atiyah—Ward ansatz solutions are con-
structed by applying a particular Riemann-Hilbert trans-
form to a trivial solution.” In a similar way, E, ansatz solu-
tions are obtained; however, the seed solution is nontrivial:
f=P_2"+1, e = 0

In Sec. I we review the inverse scattering method to the
Ernst equation. The explicit description of an ansatz is stated
in Sec. ITT and here the action of RHT is defined by solving a
Riemann-Hilbert problem. Determinantal solutions corre-
sponding to ansatz E, are derived in Sec. IV.

The method of Vein,” which uses Bicklund transferm of
Nakamura,® seems to be closely related to our method via
Bicklund transform for the SDYM equation. The relation
between them is now under consideration. Finally we note
that recently Candler and Freeman® have obtained two fam-
ilies of determinantal solutions by using bilinear representa-
tion of the Ernst equation.

(D
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Il. INVERSE SCATTERING METHOD

Throughout this paper we assume f 50, for the function
[ represents physically a nonvanishing coefficient of a Lor-
entz metric. Let us define a matrix 7(z,0) by

_[i+e e
T= f 4 b (2)
e _1
f f
then Eq. (1) is represented in the matrix form
3,(pd, ™™ ") +3,(pd, ") =0, 3)
detr=1, ‘r=r (4)

Following Belinsky-Zakharov,’ we rewrite Eq. (3) in

terms of the matrices U= pd, 77~ ' and ¥V = pd, 77~ ":

3,U +9,¥V=0, p(d,U~3,N+V+[UV]=0.
(5)

Then we can see that a system of linear differential equations
for W= W(z,p,A), AeC,

D,W=UW,D,W = V.W, (6)

is involutive if and only if U and ¥ satisfy Eq. (5), where
D, =20, +pd, + 24d,, D, =pd, — Ad,. A solution of
Eq. (6) is said to be a wave function associated with 7(z,p).
There are two important wave functions W, (z,0,4) and
W_(z,p,A); the former is holomorphic in a neighborhood of
A =0 as a function of A and the latter is holomorphic in a
neighborhood of A = oo and satisfies W_(z,p,A)|,_ . = 1,.
Equation (6) with A =0 yields that pd, W, (2,0,0)
= UW,(2p,0) and pd, W, (z,0,0) = V-W _(2,p,0). Thus
W, (2,p,0) satisfies the same equation as 7 and hence we can
assume W, (2,0,0) = 7(z,p). It is clear that the wave func-
tion W, (z,p,A4) has the following properties: (i) W (z,p,4)
is invertible and holomorphic in a neighborhood of 4 = 0;
(i) W,o(zp,0)=7(zp); (i) D,W, W' and
D,Ww,-W ! are independent of variable A. The above con-
ditions (i) and (iii) completely characterize wave function
W, (z,p,A). If a square matrix function W (z,0,4) satisfies
the conditions (i) and (iii), then it follows from the property
(iii) that 7(z,p0) = W, (z,p,4) |, _ o is a solution of Eq. (3).
We note that another wave function W _(z,0,4) will play an
important role when we attempt to find W, with desired
properties by solving a Riemann-Hilbert problem.
We give the simplest example, which is used in the next
section.
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Example: Let 75 (2,p) be a solution of Eq. (3) defined
by 75 (z,p) = diag(p ™ *,0*), s€R. The corresponding wave
functions H (z,0,4) are given by

HY (z,p,4) = diag(p~°p*), HP(zp,A) = diag(q',g™),
where p=p*> + 224 —A2and g =1 — 2z/4 — p*/A 2

1ll. DESCRIPTION OF ANSATZ

We first review the method of Riemann-Hilbert trans-
form (RHT).*° Let W'Y be the wave function of a seed
solution of Eq. (3). The method of RHT is a way of finding a
new solution of Eq. (3) whose wave function is expressed as
W, =X,_W, where X is a holomorphic function of A
in a neighborhood of 4 = 0. Let u(#) be a square matrix
function that is invertible and holomorphic on C. Solve the
following Riemann-Hilbert problem for X_ and X, on a
closed curve Cin C; surrounding the origin:

X, =X_WQud —2z—p/A)[WP]"" on C,
X—(Zsp9°°) = 12’

where X | and X _ are holomorphic inside and outside of C,
respectively. Then W, = X W ? has the desired proper-
ties (i) and (iii) of wave functions and hence a new solution
of Eq. (3) is obtained by 7(z,0) = X, (2,0,0)-W ©(2,0,0).

Let us consider a class of solutions of Eq. (3) whose
wave functions W, have the form

W, =X, HD, W_—X_H, (7

where X, and X_ are holomorphic and invertible on C,; and
C,U{w}\{0}, respectively. Then the function w
= [W_]~"-W, is holomorphic except Ac[A_,A4, ]U{®},
where A, =z + 2% + p°. Since by Eq. (6) the function w
satisfies D,w = D,w = 0, there exists a holomorphic func-
tion w(¢) on C\R™ such that w=w(4 —2z—p*/4).
Hence we obtain the important relation

W, =W_w(id—2z—p*/), (8)
for AeC\[A_,4,].
We now consider the case when a function w has the

following form.
Ansatz E, : The function w(?) has the form

N
w(e) = —w;' "))

where w, = exp(y — 1n7/2), neN and v(?) is an entire
function on C such that v(0) #0.

By means of the method of RHT, our ansatz E,, is ex-
pressed as follows. Consider the RHT with

WO = HWD, u(t)=( 0 (—t)n)‘
(=" v

Then we can easily verify that the equation which defines
this RHT coincides with Eq. (8).

We now look for W, corresponding to w(¢) of ansatz
E,.Interms of X _, Eq. (8) is equivalent to
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0 A"
X, (zpA) '—‘X_(Z’Pr/l)'( —A" v(d— 22—,02//1))’

for any AeC, \ {0}. 9

Since w(A — 2z — p?/A) is holomorphic and invertible on
C,\{0}, there exist'® uniquely X, which satisfy (9) and
X_(zp,0) =1,

Lemma: Let X | be solutions of the Riemann-Hilbert
problem (9) such that X _(z,0,00) = 1,. Then (i) det X,

= 1; (ii) the matrix 7(z,0) = X, (2,0,0):*H"?(z,0,0) is a
solution of Eq. (3) such that det = = 1.

Proof: From Eq. (9) there follows det X, =det X_.
Since the left- and right-hand sides of this equality are holo-
morphic, respectively, on C; and C; U{ % }\ {0}, it follows
that both sides are analytically continued to C, U{®}, so
they must be constant on C; by virtue of Liouville’s theorem.
Noting X_(z,0,c0) = 1,, wehave det X, = 1.

The second statement (ii) is proved in a standard man-
ner as follows. From the definition (7) we have

D1W+'[W+]‘] =Dl/Y+'[/Y-4»]_1

—n 0
+X+( on n>'[X+]_l’
DW_(W_]"'=DX_-[X_]7"

) SJur

Therefore D,W_ +[W_ ]~ "' and D,W_-[W_]"" are holo-
morphic, respectively, on C, and C, U{® }\{0}. On the
other hand, operating D, on both sides of Eq. (8), we see that
DWW (W, ] '=DW_-[W_]1""' for AeC\[A_,A,].
Hence, again, Liouville’s theorem shows that
D,W_+[W )" 'isdependent of the variable A. Similarly we
can prove that D,W_ +[W ]! is also independent of A.
Consequently 7(z,0) = W_ (z,0,0) is a solution of Eq. (3).
Finally, as a corollary of the first statement, we obtain
det 7 = 1. Thus the lemma is proved.

In the next section we shall give a formula that repre-
sents 7(z,0) by means of the function v(#). If n is an odd
number, then the matrix ~ shall turn out to be automatically
symmetric. Hence a solution of the Ernst equation is ob-
tained by (2).

IV. EXPLICIT FORMULA

We now present an explicit formula that represents the
solution 7(z,p) of Eq. (3) corresponding to ansatz E,, .
Theorem: Let K = (k,s )rs—o be the matrix defined by

2
b= fe T2 B,
2'n'\/ A

where the 1ntegratlon contour C encircles the origin. Let
k..’s be the cofactors of K. Then:

(i) There exists a neighborhood of (z,0) =
that det X 0 and k,, #O0.

(ii) The solution 7(z,p) of Eq. (3) corresponding to
ansatz E, is given by

Mo )
T(z,p) (Co do 0 pn s
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where
k
bo_~nn’ d():d?tK,
kOn kOn
SRR PSP TR
0 detk °  detk ° detK °

(iii) In the case where 7 is odd, 7 is symmetric, whereas
it is skew symmetric in the case where # is even.
Proof: (i) From the definition of K = (k,,), we have

L yayarrsn

kr:lz:p:O_ §C

217'\/_
Since the function v(A) is entire, it follows that
k.| ___{O, for r+s>n+1,
rlz=p=0 v(0), for r+s=n.

This shows that detK li=poo =€v(0)"*' and
kouw|,= =0 = €v(0)", where |€| = 1. Hence there exists a
neighborhood of (z,p) = (0,0) such that det K #0 and
ko, #0. (ii) Let us write the matrices occurring in (9) as

o -t ?)

where ad — bc = ad — By =1 and «, f3, 7, § are holomor-
phic as functions of A on CU{ ®© }\ {0} while q, b, ¢, d are
holomorphic on C. Then Eq. (9) is equivalent to
a= —A"B, ¢c= —A1"5, (10)
b=A ""a+pPv, d=1""y+ bv. (11)
It follows from Eq. (10) that a and ¢ are polynomials of A of
degree at most n:

a= ia,/l’, c= ic,&’.
r=20 r=0

The coefficient of A ~” in the Laurent series of b — 4 ~"a,
d — A ~ "y vanishes for 0 < r < n, so that

dA
add A7 =
) (Bv) >

Substituting = —al =% 6= —cd "
tions, we obtain

‘i—/{ (bv)A"=0, O<r<n.

into these equa-

n n
Svoa,=3v,,,6=0 0<r<n
s=0 s=0

Further, a(z,p,0 ) = 1 and y(z,p,0 ) = 0, a fact that leads
to

n n
Zun+sas:19 zvn—f—scszo'
5=0 5=0

Let us denote the values of b and d at 4 = 0 by b, and d,,
respectively. Then we get

n n
Yuva, = —by, > ve, = —d,
s=0 s=0
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Hence we have the following linear equations for column

vectors (a,);_o and (¢, ), _,:

K-(a,) - ’( - bO,Oyn-’O,l): K‘(C,) - t( - d010’"-,0’0),
(12)

where K = (k. )7, _ o, K, =V, .. Since the matrix K is in-

vertible,

IEOr b + ]Enr kOr d 0< <
a, = — , ¢, = — , 0<rga.
’ detK °  detkK detK °
(13)
Further we obtain g, =0 and ¢, = — 1 from Eq. (10) by

using the conditions 8(2,0,.0 ) = 0and §(z,p,0) = 1. Con-
sequently Eq. (13) with » = n implies

k

nn det X
b = d = —= .
° kOn ° kOn
(iii) Since by = k,,/k,, and c, = — koy/k,,, we have to

show
Pk =(—1)p ke (14)
To this end we introduce a matrix A = (A,,)},_, defined by
AVJ = A

—r—s+4+n?

A L 42— ph ),1 ,
k= - \/__ ﬁc ( 7 + P
By using this matrix, we can express the matrix K as
k,=p """ "A,,, obtaining

,}00 =an00’ iénn =p_nznn'
Further, we can easily verify that A _, = ( — 1)A, so that
Ay = (— 1)"A,,, which yields Eq. (14). Thus the theorem
is proved.

It follows from this theorem that the matrix 7(z,0) with
n=2m — 1, meN gives a solution of the Ernst equation.
The corresponding exact solution is ya
=p~+IA,, _o/detK and e=k,, ,,,_,/detK. In

terms of the matrix A we get

f p—2n+1A 10 A2m—l,2m—1
detA det A
an expression that was originally derived by Kyriakopou-
los.!

—2n+1

e=p
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It is known that massless scalar, Maxwell, and linearized metric fields (in an appropriate
gauge) having data of compact support will evolve to be asymptotically flat on any
asymptotically flat background space-time. However, little is known about the evolution of
data that is reasonably well behaved but has nontrivial falloff at spatial infinity. Is the set of
such data that evolves to be asymptotically flat at null infinity in a curved asymptotically flat
space-time of the same size as, and does it consist of elements with falloff rates similar to the
set of such data in Minkowski space-time? Stewart and Schmidt analyzed massless scalar fields
on both the Minkowski and Schwarzschild space-times. Their calculations indicated that the
set of Schwarzschild data in question was much smaller than the Minkowski set. In this paper,

this problem is reexamined and it is determined, contrary to the indications of Stewart and
Schmidt, that the Schwarzschild set is of the same size, and its elements have falloff rates
similar to the corresponding Minkowski set. This result supports the ability of the definition of
asymptotic flatness to admit a large class of space-times.

I. INTRODUCTION

The introduction of the definition of an asymptotically
flat space-time by Penrose' and the subsequent development
of the theory of asymptotics has proved fruitful in our under-
standing of gravitational radiation. This modern approach
to studying the far-field limit of general relativity has, in
particular, yielded precise definitions of important quanti-
ties such as the radiated Bondi energy flux and the Bondi
mass. However, very little is known concerning the existence
of exact solutions to Einstein’s equation that contain gravita-
tional radiation and have a complete future null infinity.

The question of whether the presence of gravitational
radiation will inhibit a smooth differential structure at null
infinity has been studied in the literature. Winicour,” Chris-
todoulou, Klainerman,® and other authors have obtained re-
sults indicating that it may be necessary to reduce the re-
quired differentiability class of null infinity to some finite
order to guarantee that the definition of an asymptotically
flat space-time will admit a large enough collection of radiat-
ing space-times to make it useful. On the other hand, Frie-
drich® proved that given data on a hyperboloidal initial data
surface—that is, a surface having a cross section of future
null infinity for a boundary—such that these data are
“close” to that of the Minkowsi space-time, then these data
have a maximal future evolution that can be smoothly con-
formally extended to include that part of future null infinity
lying to the future of this surface. However, Friedrich did
not prove that the maximal evolution to the past could be
smoothly conformally extended to spatial infinity or past
null infinity, or even to that part of future null infinity lying
to the past of the boundary cross section of the initial surface.

To shed light on the compatibility of the definition of an
asymptotically flat space-time and the presence of radiation,
some authors have studied linear test fields on a curved back-
ground. Geroch and Xanthopolous,® in the framework of
linearized gravity, demonstrated that in an appropriate
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gauge any solution to the linearized Einstein equation with
data of compact support will smoothly conformally extend
to null infinity. Their result, however, still leaves open the
possibility that linear test fields having data with nontrivial
falloff at spatial infinity may somehow fail to evolve to fields
that are smoothly conformally extendible to null infinity
when curvature is present.

Let us now focus on this issue for test massless scalar
fields on a Schwarzschild background. In the Schwarzschild
space-time, Stewart and Schmidt® analyzed the asymptotic
behavior of massless test scalar fields having nontrivial data
in a neighborhood of spatial infinity. They interpreted their
results as indicating that, besides the known static solutions,
almost no such massless scalar fields exist that are smoothly
conformally extendible to both past and future null infinity.
This work was later extended to higher spin fields by Porill
and Stewart.”

In this paper, we reexamine the issue of whether the
curvature of the Schwarzschild space-time tends to inhibit
massless scalar test fields with nontrivial data at spatial in-
finity from evolving to fields smoothly conformally extendi-
ble to null infinity. We determine, contrary to the indications
of the work of Stewart and Schmidt, that it does not.

This paper contains two results. The first result is a de-
monstration that the class of Schwarzschild test data having
asymptotically flat evolution is similar in size to the corre-
sponding Minkowski class. This demonstration, given at the
end of Sec. II, basically consists of constructing a one-to-one
map from Minkowski data to Schwarzschild data that pre-
serves asymptotically flat evolution. The drawback of this
first result, however, is that it gives us no clue as to how the
falloff behavior of Schwarzschild data that evolves to be
asymptotically flat compares with that of the Minkowski
data. It could be that such Schwarzschild data would tend to
behave badly in a neighborhood of spatial infinity.

Our second result clears up this drawback. It is a de-
monstration that the Schwarzschild data that evolves to be
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asymptotically flat does indeed have falloff behavior similar
to the corresponding Minkowski data. In both the Minkow-
ski and Schwarzschild space-times, we will specify initial
data on a constant time surface, i.e., a surface orthogonal to
the timelike killing field. On such a surface, initial data for a
scalar field is the pair (P, ,®P o, ), where @, and @ g, are
the restriction of ® and its time derivative to the surface. In
constructing this second result, we consider the time sym-
metric and time antisymmetric pieces of the data separately
and will focus upon the case of time symmetric data,
(®6,,0). (An extension of this result to time antisymmetric
data will then be described briefly in Sec. VII.) We shall
construct maps 3, , that yield an injective correspondence
from time symmetric Minkowski data that falls off like
r~ "+ Y is proportional to Y¥,,,, and evolves to be asymp-
totically flat at .# to time symmetric Schwarzschild data
that falls off like 7+ ", is proportional to Y,,, and
evolves to be asymptotically flat at .#. (Here r denotes the
Minkowski radial coordinate and 7 denotes the Schwarzs-
child radial coordinate. ) This shows that there are ““as many
Schwarzschild data sets falling off like 7~ " * I as Minkow-
ski data sets falling off like r — ¢* * P that evolve to be asymp-
totically flat.”

The paper proceeds as follows. We begin in Sec. II by
restricting attention to radial and time-dependent fields pro-
portional to a fixed Y, , thus effectively reducing the prob-
lem to that of studying fields in two dimensions. We then
identify both the Minkowski and Schwarzschild equations
as evolution equations on a single two-dimensional flat
space-time that we denote as . space. Our first result, the
construction of a map II, between Minkowski and
Schwarzschild data is then obtained by associating a Min-
kowski data set with a Schwarzschild data set when they
induce the same null data on a certain pair of intersecting
null lines. An appropriate application of the null initial value
formulation will guarantee that a field will smoothly evolve
to null infinity if its null data smoothly extends there. The
preservation of asymptotically flat evolution then follows
because, by construction, the map preserves the null data.

In Sec. III, we determine the general form of time sym-
metric Minkowski data proportional to Y,,, that evolves to
be asymptotically flat. We find that, aside from a linear com-
bination of ¢ particular solutions, the general form is
(r=“*Y A1/r)Y,,,,0) where fisan arbitrary smooth func-
tion of its one variable. Depending on the order of the zero f
has at zero, the term f(1/r)r—“*? may fall off like
r~ *+ D or faster for any integer n> 7.

In Sec. IV, we will introduce the notion of an evolution
equation of type ¢and construct differential operators that
will take time symmetric data from a type-/equation to time
symmetric data for a type-(¢+ 1) equation while preserving
asymptotically flat evolution. The type-¢ equation is a cer-
tain generalization of the /th Schwarzschild evolution equa-
tion. The main result of this section will be to associate with
the /th Schwarzschild evolution equation a type-0 equation
and a sequence of differential operators that will map data
for the type-O equation to data for the #th Schwarzschild
evolution equation while preserving asymptotically flat evo-
lution. Hence the study of the ¢#th Schwarzschild evolution
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equation is essentially reduced to studying the type-0 equa-
tion.

In Sec. V, we introduce the notion of an asymptotically
regular function. Basically, an asymptotically regular func-
tion of 7 (or 7) is a generalization of a function that is smooth
in the variable 1/r (or 1/7) in the sense that the k th deriva-
tive of an asymptotically regular function will fall off rough-
ly k powers of # (or 7) faster than the function itself. Appen-
dix A contains a statement and proof of a theorem that
makes precise the falloff properties of the derivatives of an
asymptotically regular function. We will need the notion of
an asymptotically regular function to control the falloff rate
of certain data sets under the action of the differential opera-
tors introduced in Sec. IV. We then proceed to prove a
theorem which demonstrates that any time symmetric data
set for a type-O equation that evolves to be asymptotically
flat will be asymptotically regular in 7.

In Sec. VI, we will then construct for a fixed type-0
equation a sequence of injective maps W,. Each map will
take spherically symmetric Minkowski data that fall off like
r~ " and which have asymptotically flat evolution to data for
the type-O equation that fall off like »~” and which have
asymptotically flat evolution. Appendix B contains a
theorem that is used to demonstrate that our W maps so
constructed do indeed preserve the falloff rate. The 5,
maps will be taken to be the W, maps when the type-0 equa-
tion considered is the Schwarzschild ¢£= 0 evolution equa-
tion. We then construct the B, , maps for the cases ¢>1.
Roughly, this will be accomplished by composing the W
maps with the appropriate £raising operators introduced in
Sec. IV.

In Sec. VII we extend the action of the 8, , maps to time
antisymmetric data as well.

Il. REDUCTION TO TWO DIMENSIONS

In this section we reduce the study of massless scalar
fields in the Minkowski and Schwarzschild space-times to
that of studying fields satisfying wave equations on a single
two-dimensional flat Lorentz space which we denote as .7
space. We end the section by constructing our one-to-one
map [I1, from Minkowski data to Schwarzschild data that
preserves asymptotically flat evolution.

We start our reduction by separating out the radial and
time dependence of scalar fields in the Minkowski space-
time by restricting our attention to fields proportional to a
fixed Y,,,. Let the Minkowski metric in standard spherical
coordinates be

ds =dr*—dt?+ r*sin*(6)d0* + r2de?, (2.1)
and let ¥ be a massless scalar field of the form
V=(6/Y,m; (2.2)

where ¢ is a function of » and ¢. That W obeys the massless
wave equation in the Minkowski space-time implies that ¢
obeys the two-dimensional wave equation

a’ a2 A+ 1

( 7= _2> ¢= (_Tl é.

ar at r
By definition, W is an asymptotically flat field if and only if
the conformally related field Q ~'¥ (where € is a conformal

(2.3)
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factor that compactifies the Minkowski space-time) has a
smooth extension to both future and past null infinity. This
definition is independent of the particular conformal factor
used. Since the conformal factor 1/r is known to compactify
the Minkowski space-time, ¥ will be asymptotically flat if
andonlyif¢Y,,, ( =r¥),and therefore ¢ itself, is smoothly
extendible to null infinity.

A similar situation exists for scalar fields in Schwarzs-
child. Let the Schwarzschild metric in the spherical coordi-
nates (;,;,947) be

a5 = —(1—21@-)d?2+(1—3:@) e

F

7

+ P sin*(0)d0* + P dp>. (2.4)

Let ¥ be a massless scalar field in the Schwarzschild space-
time of the form

= (¢/A Y, (2.5)

where ¢ is a function of # and ;.~The fact that ¥ obeys the
massless wave equation implies ¢ obeys

) 8= (7)

<z __ vV 2.6

(Z-%)s-7.(1)s (26)
where ¥, (1/7) is the static potential given by

T (175 AL+ 1) )

(1) (&=, 2.7

vam=(1-2) (A 2 @27
and

PF=P(F)=F—2m+2mlIn(¥ —2m). (2.8)

Since the conformal factor 1/7 is known to compactify the
Schwarzschild space-time, ¥ will be asymptotically flat if
and only if &Y,,m ( = 7¥), and therefore ¢~5 itself, is smoothly
extendible to null infinity.

Let us now conformally compacify the wedge r> |7 | of
the Minkowski space-time so that the conformal metric is
both flat and smoothly extendible to . On this wedge,
choose the conformal factor € as

Q=1/(r?>—1t3. 2.9)

Then, in terms of the new spherical coordinates (;,?‘,9,(p)
defined by

t=Q1, =0, (2.10)
the conformal metric d5* defined by d§* = Q2 ds? is
di? = dP — dt? + P sin*(0)d6>? +Pdp’. (2.11)

Let us interpret (2.11) as defining an auxiliary flat space-
time with global spherical coordinates (¢,7,6,¢) whose ori-
ginis the point /. In this picture, then, the wedge > | | in the
Minkowski space-time is conformally embedded onto the
F> |tL wedge of this auxiliary space-time. The future null
cone of £ is to be identified with that part of future null
infinity on the boundary of the wedge »> |t |. Likewise, the
past null cone of ¥ is to be identified with that part of past
null infinity on the boundary of the same wedge.

Now, define .¥ space as a flat two-dimensiona} Lorentz
space with global inertial coordinates X and f, metric
— dt* + d%?, and identify & with ? for > 0. Through this
identification we may view the field ¢ as existing on the re-
gion X > |t | of .# space. Define the future and past null boun-
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daries of this region as 0™ and o™, respectively. Let us
further denote the ¢ = 0 and X > O surface in this two-dimen-
sional space-time as 3. The surface 2 is the one-dimensional
version of the ¢ = 0 initial data surface in the Minkowski
space-time and the line segments 0% and ¢~ represent the
one-dimensional versions of those pieces of future and past
null infinity on the boundary of the r> |t | wedge in the Min-
kowski space-time. These structures are depicted in Fig.
1(a). We will also use the convention of denoting the origin
of . space as iV since it represents the two-dimensional ver-
sion of spatial infinity. Viewed as a field on .¥ space, ¢ will
represent an asymptotically flat field if it has a smooth exten-
siontoot and o™ Wrmng the evolution equation (2.3) for
¢ in terms of X and ¢, we get

a? 52 A+ 1)
2 ==

x?
We note that thlS evolution equation is regular on ¢* and
ag .

Remarkably, we can also identify the coordinates X and
zon the > |2| region of .% space with the radial and time
coordinates of the Schwarzschild space-time in such a way
that o and o~ will represent a one-dimensional version of
its future and past null infinity. This is a rather surprising
result since it is known that the Schwarzschild space-time
can not be conformally extended to smoothly admit a point
at spatial infinity. However, in two dimensions, all metrics
are conformally flat. Hence it is possible to compactify the
Schwarzschild space-time so that the radial and time compo-
nents of the conformal metric will be smoothly extendible to
spatial infinity and appear flat. It would then be a simple
matter to identify these radial and time components with the
flat metric of .¥" space. We will omit the steps needed to
compactify the Schwarzschild space-time in this way and
proceed directly to writing down the coordinate identifica-
tion.

Define the null coordinates (#,0) in the Schwarzschild
space-time by

o. (2.12)

=7 —1, (2.13)
b= +1, (2.14)
and the null coordinates (&,0) in . space by
U=Xx— ; v=x+t,
t
oV
A A
X — X
1
OU
(a) (b)

FIG. 1. Some structures on . space are shown. In (a) the two null surfaces
o* and o~ are depicted along with the initial data surface 3. In (b) the
origin i  representing the point at spatial infinity is depicted along with the
null surfaces ¢, and o,.
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and identify these coordinates by
b= 1/2P ~'(i1/2) — 4m), (2.15)
ft=1/2P~"(0/2) — 4m). (2.16)

Unlike the Minkowski identification where only the wedge
r> |t | was identified, this identification will map the entire
Schwarzschild space-time external to the event horizon onto
the X > |z | region of .Z" space. The rather complicated look-
ing form of these identifications stems mostly from the re-
quirement that the differential structure between null infin-
ity and o™ and o~ should be preserved. Preservation of the
differential structure is most easily shown by demonstrating
that 9, a smooth coordinate on o~ is also, via the coordinate
identifications, a smooth coordinate on past null infinity in
the Schwarzschild space-time. Along the line # = 0 we have
i = 27*. By substituting 27* for # into (2.15) we have ) = 1/
(2F — 4m). Now, 1/7, being a conformal factor that com-
pactifies Schwarzschild, must be a good coordinate on null
infinity. Therefore D, which is a smooth function of 1/7 along
the line D = 0, must be smoothly extendible to past null infin-
ity along this line. Since 0 is a null coordinate, being smooth-
ly extendible to past null infinity along this one line is enough
to guarantee that it is a good coordinate along all of past null
infinity. Hence the differential structure is preserved. To re-
gularize the evolution equation (2.6) for dono* and o~
simply multiply both sides by (4md + 1)(4m#at + 1)~
and express it in terms of the “caretted” coordinates as

(3—2—32)a~(4mﬁ+1)(4ma+1)9—2’f/(l)$
a? ar) A

(2.17)

The potential on the right is regular on ¢* and o~ because
f/( 1/7) is a smooth function of 1/7 that falls offlike (1/7)? or
faster, so when it is multiplied by 2 it can be viewed as a
smooth function of 1/7 multiplied by (1/7)%/Q’—the ratio
of two conformal factors squared—which itself must be
smoothly extendible to o+ and o~. Thus we may view the
original separated scalar wave equations on the Minkowski
and Schwarzschild space-time as the regularized wave equa-
tions (2.12) and (2.17) on . space.

We now construct a simple one-to-one map 11, that
takes scalar data to scalar data and preserves asymptotically
flat evolution in the sense that if a data set in the domain is
evolved using the Minkowski #th evolution equation (2.3)
and the resulting field is smoothly extendible to ¢* and o~,
then the image data set evolved using the ¢th Schwarzschild
evolution equatlon (2.6) will result in a field smoothly ex-
tendible to o+ and o~ In the > |7 | region of .% space place
two intersecting null line segments, ¢, and o, so that o, has
an end point on o, oy has an end point on o, and both
intersect the point = X, and 7 = 0. These line segments are
depicted in Fig. 1(b). Let (¢, .6, ) be data on =. Evolve
these data into both the future and past domains of depend-
ence of X using (2.3), the Minkowski #th evolution equa-
tion. Restrict the resulting field ¢ to the two null segments o,
and o, and, using the null initial value formulation, evolve
this null data using (2.6), the Schwarzschild ¢th evolution
equation, into the entire domain of dependence of =. (Recall
that wave equations may also be evolved in spacelike direc-
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tions in two dimensions.) The resulting field # now induces
data, say (¢(0) ,¢(0) ), onto 2. The action of II, on
($0) B0 ) is defined to be (B0, b0y )-

Now, assume ¢ is smoothly extendible to both o™+ and
o~ . Then the null data it induces on o, and o, will be
smoothly extendible to their end points on ¢* and 0~. A
smooth extension of @ to all of o™ and o™~ can be produced
by evolving this extended data with the regularized equation
(2.17). Hence I1, will preserve asymptotically flat evolu-
tion.

We summarize the above discussion about II, in the
following theorem.

Theorem 1: The bijection II, from data on 2 to data on
2 preserves asymptotically flat evolution in the sense that ifa
data set evolved with the £th Minkowski evolution equation
(2.3) has a smooth extension to all of ¢+ and o~ then the
evolution under the #th Schwarzschild evolution equation
(2.6) of its image under I1, will also have a smooth extension
toallof ot and ™.

lll. THE MINKOWSKI ANALYSIS

In this and the next three sections, we shall focus atten-
tion upon the case of time symmetric data. Let us denote as
M(£) the set of functions fon X such that ( £,0) evolved
with the /th Minkowski equation results in a field smoothly
extendible to o* and o~. In this section we will prove the
following theorem about the general form of the functions in
M(&).

Theorem 2: A function f defined on the initial surface =
isin M(0) if and only if there exists a smooth function of one
variable, say g, such that f= g(1/r). Furthermore, fisin
M(¢) for ¢> 0if and only if there exists a smooth function of
one variable g and a collection of ¢constants, say C,, C,,...,
C,_,,such that f=g(1/r)r "4+ CP =+ C,\¥* "+

+C,_,r X

Proof: On the wedge % > |t | of . space, let ¢, satisfy the
¢'= 0 Minkowski evolution equation (2.12). This is just the
standard wave equation on .¥ space. The general time sym-
metric solution is

do=[A&) + A(D)]/2. 3.1
The initial data of such a solution on 2 is (( f(%),0). The field
&, will be smoothly extendible to o™ and o~ if and only if fis
smooth at zero. Hence

M) =

Now, for each non-negative integer j define the operator A;
on fields in .¥ space by

{f(%)| fis a smooth function at zero}.

A8 =22 (59) (32)
and the operator K by
N J

Rig1 =22 (Xﬂl) (3.3)

Here and in the future, any partial derivatives taken with
respect to r, X, and #* will be taken holding ¢, 7, and 7 fixed,

respectively. In terms of these operators, the £th Minkowski
equation can be written as either (3; & — A,_,A,)¢ =0or
(8; & — A, A,)¢ = 0.1t follows that if § satisfies the /th
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equation then K,[¢] will satisfy the (£+ 1)st Minkowski
evolution equation and A, [¢] satisfies the (¢£— 1)th
equation. Indeed, (&3 —A,, A, )¢=0 implies
A3 —A,,A)$=0, which implies (3;3
—AA,. YA [#] =0, which shows that A, [¢] satisfies
the (£+ 1)st equation. Moreover, A ,as an operator is regu-
lar on 0+ and o~. Hence A [#] smoothly extends to these
boundaries if ¢ does. The converse is also true: if ¢, , satis-
fies the /th + first Minkowski evolution equation, is time
symmetric, and smoothly extendible to ¢* and o~, then
there exists a time symmetric ¢, satisfying the ¢th equation,
which is smoothly extendible to ¢+ and o~ and satisfies

¢/+1 =K/[¢/]- (3.4)

To see this, let (f(%),, ,,0) be the initial data for ¢, ,,
where f, | is smooth except, possibly, at & = 0, and define
the function f, by

SG0)

2 Al 1
fA(X)=x —
xf+1

dx. (3.5)
Define ¢, as the field satisfying the ¢#th Minkowski evolu-
tion equation with ( f(%) ,,0) as initial data. It follows that
b,y = X,[¢,] since both sides satisfy the (£+ 1)st evolu-
tion equation and both have the same initial data. In order to
show that ¢, is smoothly extendible to o* and o~, view
(3.4) as a differential equation for ¢, with source ¢, , and
integrate this equation along the lines of constant ¢ to get the
appropriate extension.

From the above remarks about the operators Xj, it is
clear that each solution to the #th evolution equation that
smoothly extends to o* and o™ can be generated by succes-
sively applying the appropriate sequence of the A ; operators
for 0<j<to solutions of the £= 0 evolution equation that
have a smooth extension to o+ and ¢~. In a similar manner,
because the operators Xj act naturally on initial data, each
element of M(¢’) can be generated from an element of M(0)
by successively applying the appropriate sequence of Xj op-
erators. For example, in the /= 1 case, the time symmetric
data that evolve to fields smoothly extendible to o and o~
are precisely of the form (Ay[4(%)],0) where 4 is a smooth
function. To determine the behavior of this data, write the
function Xo[h()‘c)] as

A h(3)] =3 -L [AER) = kO | AO)
ax

(3.6)

A

X

The first term in brackets on the right side is, as a function of
one variable, equal to a smooth function of X multiplied by X.
The second term is equal to — A(0)X ™", which is singular at
% = 0. Therefore,
M) = {f(%)| f(X) = 2g(%) + C,x~ ", where g is
smooth and C, is an arbitrary constant}.

In a similar manner, we can apply the operator A, to this
¢= linitial data to generate the /= 2 initial data that evolve
to fields smoothly extendible to o and o~ . The result of this
calculation is

M(2) = {fAR)| f(X) =#g(X) + C, + C,2™7, where
g is smooth and C, and C,

are arbitrary constants}.
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By itefating this procedure we can construct the form of
the time symmetric data that evolve to fields smoothly exten-
dible to o* and o~ for any £ For fixed ¢> 0, we get

M(&) ={fR)| (%) =g(X)&" + Cxr'~?
+CE 4+ C,_ 27
where g is smooth

and C,, C,,...,C,_, are arbitrary}.

The desired result of the theorem now follows because
1/r=X%on 2.

IV. OPERATORS FOR THE TYPE-¢/ EQUATION

In the previous section we found that the differential
operator A, mapped solutions for the #th Minkowski equa-
tion that evolved smoothly to o+ and o~ to solutions for the
¢+ first Minkowski equation that evolved smoothly to o™
and 07. Note that Egs. (2.3) and (2.12), two different ver-
sions of the same Minkowski evolutionAequation, have the
same form (simply replace X with 7 and ¢ with ¢). Therefore
one can construct a set of £raising operators, say @j, differ-
ent from A, by simply replacing X with r in the definition of
the A, operators. The action of (7)j on a field ¢ is then

® — i+ d ¢
®j(¢)—r] IE(F)

The ¢th such operator, being smooth on o and ¢~, will
map time symmetric solutions of the £th equation that are
smoothly extendible to ¢ and ¢~ to time symmetric solu-
tions of the (¢+ 1)st equation that are smoothly extendible
to ot and ™. Unlike the X,- operators, however, the @j do
not work backwards. That is, if ¢, , is a time symmetric
solution of the (¢+ 1)st equation, which is smoothly exen-
dible to null infinity, then there may not exist a time symmet-
ric solution ¢, of the #th equation which is smoothly exten-
dible to null infinity and satisfies

¢/+1 =®/[¢/]~ (4.2)
This means that one will not be able to construct all of M(¢)
by applying the appropriate sequence such @j operators to
elements in M(0). One can ask, however, what subset of
M(?) is generated by applying the appropriate sequence.
The answer is precisely those elements of the form
S(1/r)r =, where fis smooth.

In this section, we will construct operators for the
Schwarzschild space-time analogous to the @j operators.
[As we shall soon see, the construction of these operators
depends heavily on the fact that the associated equation is
static. For this reason there is no analog of A, for Schwarzs-
child because, unlike the Minkowski equation (2.12), the
¢th Schwarzschild evolution equation written in terms of
the caretted coordinates of .¥ space is not static. ]

To begin our constructions we need to introduce a cer-
tain generalization of the ¢th Schwarzschild equation
termed a type-£equation.

Definition 1: A type-¢ equation is an equation of the
form

a2 42 1
(—a;*z - 55)‘” = ”f(?)w '

(4.1)

(4.3)
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where the potential ¥, is a smooth function of one variable,
the function #¥,(1/7) has a limit of A/ + 1) as 7— 0, and
such that a static solution S,(1/F) exists where S, is a
smooth function of one variable that falls off like 7~ /.

The £/th Schwarzschild equation is type £ Indeed, its
potential ¥, (1/7) = (1 — 2m/P) AL+ 1)/P + 2m/F)sat-
isfies the potential fall off requirement and the static solution
7Q,(#/2m — 1), where Q, is the £th Legendre function of
the second kind, satisfies the static solution requirement.

We also wish to introduce the notion of the lowering
operation on a type-£equation.

Definition 2: The lowering operation of the type-£equa-
tion with static solution S, (1/7) consists of the replacement
of V,(1/F) by

3 In(S, (1/7))\?
()= )T

The resulting equation, which is of type (£ — 1), is said to be
L related to the original equation.

To show that a type-(¢— 1) equation is indeed genera-
ted by this prescription we need to demonstrate that V,_
X (1/7) has the appropriate leading falloff term and a static
solution exists with the appropriate falloff rate. To show that
V,_, (1/F) has the appropriate leading term we note that
S,(1/7) falls off like 7~ so the leading falloff term in the
derivative of the logarithm of S, (1/7) is ¢/7. By squaring
this result, multiplying by 2, and subtracting A £+ 1)/¥ we
get that the leading falloffterm in V,_, (1/7) is A¢— 1)/7.
To show that the L-related equation has a static solution
S, _, (1/7) with the appropriate falloff rate we first discuss
some further connections between it and the original type-¢
equation. It is possible to construct differential operators ",
and T',_, for a type-Zequation so that I', maps solutions of
the type-£equation to solutions of its L-related equation and
T,_, maps solutions of its L-related equation to solutions of
itself. Indeed, let I', be defined by

1\ 4 ¥
Ty=5S{—)% 4.5
& ’( ?)3?* (s,(l/;)) (45)
andT,_, by
= = (1\d ¥
r =S — ) — T — » 4.6
i "‘(?)ai*(s,q(l/;)) (4.6

where S,_ , (1/#) = 1/8,(1/F). In terms of these operators,
the type-¢ equation can be written as (T, ', —& &;)
¥ =0 and the L-related equation as (I',T,_, — 3. &))
Xt¢=0. If ¢ satisfies the original equation then TI",
(T/‘- T —3,8)¢=0 implying (r,r,.,—-4,4,)
X T ¢ = 0, which just states that " 4 satisfies the L-related
equation. By a similar argument, T, _, ¢ will satisfy the type-
¢equation if ¢ satisfies its L-related equation.

It follows from the form of T',_, that S, , (1/F) isa
static solution of the L-related equation. The static solution
S,_, (1/7) of the L-related equation that falls off like 7' ~*
can now be obtained as follows. The L-related equation act-
ing on S,_, (1/7) is T,[T,_,S,_, (1/7)] = 0. Therefore
r, S, ;(1/7) =S8,(1/7). Inverting the I",_, operator by
multiplying by S ,(1/7), integrating with respect to 7*, and
then dividing by S, (1/7) we get
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1 1 1\?
S,_, (T) = fS,(T) dr . 4.7)
7 S, (1/7) 7
The smoothness of $'~'(1/7) in 1/7 and its falloff rate of
# ~“now follows from this integral expression.

We can now construct the equation L related to the L-
related equation to get a type- (£ — 2) equation along with its
associated operators I',_, and T',_, . By iterating this proce-
dure we will construct a series of type-j equations for 0<j< ¢,
ending with a type-0 equation. The composite operator
T,_,T,_, T, will map solutions of this type-0 equation
to solutions of the original type-£equation. Each Tj operator
is smoothly extendible to o* and ¢~ because the static solu-
tions S; (1/7), being smooth in 1/7, all are. Hence the com-

posite T',_,T,_, T, operator will also preserve smooth
evolution to o™ and ™.

The operators T, are analogs of the ®; operators in the
sense that each increases the ¢'value of the field each is ap-
plied to, each has a natural action on initial data, and each
preserves smooth evolution to ¢* and o~ . There is, how-
ever, an important distinction that should be kept in mind.
The ®; operators for the Minkowski equation are closed in
the sense that ®, will map solutions from ¢th Minkowski
evolution equation to the (¢+ 1)st. However, the Fj opera-
tors for the Schwarzschild equations are not closed in this
sense. One is only guaranteed that ", will map solutions to
solutions of some other type-(¢+ 1) equation.

In closing this section we wish to comment on the spe-
cial case of the equation L related to a type-0 equation. As
calculated above, the leading falloff term in the potential of
the equation L related to a type-¢ equation is A ¢ — 1)/7.
For the case ¢= 0, this implies the 7~ term in the potential
of the L-related equation will vanish. It follows that the
equation L related to a type-0 equation is itself a type-0 equa-
tion. And, in fact, the equation L related to the equation L
related to a type-0 equation is the original type-0 equation.
To accommodate this particular instance we need to alter
our notation slightly. Let us denote I', as the operator de-
fined by (4.5) for /= Othat maps solutions from the original
type-0 equation to its L-related equation. Let us further de-
note I'{ as the operator defined by (4.6) for ¢= 0, which
maps solutions from the L-related equation to the original
equation. These two operators will be used in Sec. VI in our
analysis of the falloff rates of initial data that, when evolved
with a type-0 equation, has an evolution smoothly extendible
too and 0.

V.ASYMPTOTIC REGULARITY AND THE TYPE-0
EQUATION

In Sec. VI, we will use the differential operators con-
structed in the previous section in constructing our 5, ,
maps. However, since the 3, , maps are intended to pre-
serve the falloff rates of the data, we need to understand how
the falloff rates of certain data will be affected by these differ-
ential operators. In Sec. 111, where we determined the falloff
behavior of the Minkowski data that evolved to be smoothly
extendible to o+ and o~ we were able to control the falloff
rates of data under differentiation since we were dealing with
a function smooth in the variable 1/r. The derivative of a
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function smooth in 1/r and falling off like » =" for n>1 will
fall off like »— "+ . However, the data for type-£equations
that evolve to be smoothly extendible to o™+ and 0~ need not
be smooth in any readily identifiable variable. What we need
is a generalization, that will apply to such data, of the notion
of a function that is smooth in the variable 1/7 or 1/7* in the
sense that the derivative with respect to 7* of such a function
will fall off, roughly, one power of # (or equivalently #*)
faster than the function itself. The following definition of
asymptotic regularity provides such a notion. Our definition
differs from the notion of regularity put forth by Ashtekar
and Hansen in Ref. 8 in that ours deals with a function of one
variable while theirs deals with four-dimensional scalar
fields.

Definition 3: We say that function £ R—R is an asymp-
totically regular function if fis smooth, the limit of f (x)
exists as x— o0, and lim x" /¢ = 0 as x— oo for all positive
integers n, where /¢ denotes the nth derivative of f.

For functions on the initial surface 2, being asymptoti-
cally regular in the coordinate ris equivalent to being asymp-
totically regular in the coordinate 7 and 7*. This fact follows
from relations (A1) and (A2) in Appendix A.

The specific falloff behavior of asymptotically regular
functions under differentiation is captured by the following
theorem proved in Appendix A.

Theorem 3: Let f'be an asymptotically regular function
in x and let ¢>0 be a constant such that x™ fis bounded as
x— oo for all m <c. Then, for any positive integer k, x?f %
is bounded as x » oo forallg<c + k.

It turns out that a type-0 equation has enough structure
to allow us to demonstrate that its time symmetric data that
evolves to be smoothly extendible to o+ and o~ are asymp-
totically regular in r. Indeed the following theorem holds.

Theorem 4; Let 1 be a time symmetric solution of a type-
0 equation that smoothly extends to o* and o~ and has data
(£,0). Then ¢ is continuous at ©° and fis an asymptotically
regular function of r (equivalently 7 or #*).

Proof: We begin by expressing the type-O evolution
equation in terms of & and . This can be accomplished by
multiplying (4.3) by (4mbd + 1) (4mi + 1) (diz) ~% We get

3, 3,V = (4mbd + 1) (dmir + 1) (02) 2V (1/P) ¢ .
5.1

We note that the potential on the right side of (5.1),
(4mbd + 1) (4mit + 1) (#2) ~>V(1/7), blows up at the origin
* when approached along the surface Z. Indeed,
(88) ~2~%"* while V(1/F) ~X>.

Now, introduce the finer coordinate system (i, ) on
the >0, >0 wedge of ¥ space by the expressions

i (3.2)
v", (5.3)

where n is a positive even integer. In terms of these new
“barred” coordinates, the evolution equation (5.1) can be
written as

d; 9y

= (4m?" + 1) (dmu@" + V)n?(@v) ~ "+ V(1/MVY.
(5.4)

bl
&)

S
il
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Here we note that the potential term arising in (5.4) is equal
to the potential term in (5.1) multiplied by »n*(#)" — " .
With n3>4, this extra factor, n?(up)"~ !, falls off fast
enough at i ° to make the potential vanish there. Indeed,
along £ we have (47) "+ ~%~@*¥" while V(1/
#) ~%>. In fact, with respect to the barred coordinates the
potential in (5.4) will be at least C*”" ~*> ati . To see this, let
us first express—using (5.2), (5.3), and (2.13)-(2.16)—
the function { = 1/7* in terms of these new coordinates as

£= 1 _ 45"

P 25" 4 20" — 8mn’@"D" In(4@0)
This function &, along with the combination § In($), are
both C"~ ! extendible to . Let us further define the func-
tion y by ¥ = (F — 2m)/#*. Using (2.8) we find that y satis-
fies the following equation:

y=142m{In(§) — 2méIn(y) . (5.6)

For large 7, the function ¥ has a limit of unity. Hence as a
function on .% space ¥ can be extended continuously to i °
with this same limiting value. One can now apply the implic-
it function theorem to Eq. (5.6) to solve for y as a smooth
function of £ and £ In(¢) in a neighborhood of . Since both
&and £ In(&) are C"— Y at it follows that y is too. Now,
let us substitute the quantity £3y*T(£y ") into (5.4) for
V(1/7), where T is the appropriate smooth function of one
variable. We get

350, ¢ = (4mv" + 1) (4mu" + V)n*(@v) ~ "+ Y

X &y Ty, (5.7)
Excluding the (#0) ~ " * V) £ ? term, each factor in the poten-
tial of (5.7) is C*" ~ 1 extendible to . By using (5.5), one
can explicitly compute that (5) ~ "+ P £3is C" ~ ) exten-
dible to . Therefore the entire potential term in (5.7) is
C" =% extendible to i °.

The next step in the proof is to show that ¢, being the
solution of (5.7) that smoothly extends to o™ and o, will
have a C"" =2 extension to /® with respect to the barred
coordinates. From the general initial value formulation
theorem 7.4.7 in Hawking and Ellis® it follows that smooth
data for a two-dimensional wave equation with a flat wave
operator and with a potential in the jth Sobolev space can be
evolved uniquely into the domain of dependence of the initial
data surface and the resulting evolution will also be in the jth
Sobolev space. The collection of C/ functions is a subset of
the jth Sobolev space and, in two dimensions, is itself a subset
of the collection of C'/ =%’ functions. Thus evolving smooth
data with a two-dimensional wave equation having a flat
wave operator anda C" ~ *) potential will resultina C*" — %
evolution. (Actually, by integrating the two-dimensional
wave equation it is possible to demonstrate that the resulting
evolution will be C" — 2 . However, the C" — > result is suf-
ficient for our purpose.) Now, recall that in two dimensions
a wave equation can be evolved in spacelike directions. In
particular, consider the intial data for (5.7) induced by ¥ on
some timelike initial data surface that intersects both o* and
o~ . This data will be smooth in the barred coordinates since
1, being a smooth function of # and # in a neighborhood of
the initial data surface, is trivially smooth in the finer coordi-
nates # and v. Furthermore, since the potential in (5.7) is

(5.5)
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C" = and i is in the domain of dependence of the timelike
initial data surface, we are guaranteed that this smooth data
can be evolved to a field that is C*” ~*’ and includes i °. This
field, then, constitutes a C" ~*’ extension of ¢ to i *. The
first conclusion of the theorem, that # has a continuous ex-
tension to i Y, follows trivially from the existence of this
C{" 3 extension.

Now define the rectangular barred coordinates (X,1) on
< space by

Xx=(a+10)/2, (5.8)
t=(u—"0)/2. (5.9)

Since ¢is C*" ~ at #, it follows that, for k a positive integer,
the field f, defined by
- dY
fi= (x % ) v
is continuous and vanishes at i° for 1<k<(n — 5).On 3, the
coordinates X and 7 are related by

(5.10)

1/r=Xx" (5.11)
from which it follows that f;., on X, is given by
k
fk=<—nr§—)¢. (5.12)
ar

The integer n was arbitrary. Therefore on £, the limit of /, as
r— oo is zero for any k> 1. This implies that £, the restriction
of 1/ to the surface Z, is an asymptotically regular function of
r. Q.E.D.

VL. CONSTRUCTION OF THE MAPS §3,,,

Fix a type-0 equation. In this section we will construct
for each integer #>0 an injective map W, that takes func-
tions smooth in 1/r [i.e., functions in M (0) ] that fall off like
r~ "to other functions on = that fall off like » ~ 7 (equivalent-
ly 7~ ") and which when viewed as time symmetric data for
the type-0 equation will have an evolution smoothly extendi-
bleto o™ and o~ . Hence we can conclude that time symmet-
ric data for a type-0 equation that has an evolution smoothly
extendible to o and o~ has falloff behavior similar to the
Minkowski ¢= 0 data having asymptotically flat evolution.
Our desired Schwarzschild maps for the spherically sym-
metric case 3, , will be taken to be the W, maps when the
type-0 equation under consideration is the £= 0 Schwarzs-
child evolution equation. We will then construct the 3, ,
maps for the cases #> 0. Roughly, this will be accomplished
by composing the W maps with the appropriate fraising
operators introduced in Sec. IV.

We start by constructing an injective map a which will
take functions in M(0) to other functions on £ which, when
viewed as time symmetric data for a type-O equation, will
have an evolution smoothly extendible to ¢ and o~. The
maps W, and W, will then be obtained by appropriately re-
stricting the domain of a. Basically, the construction of this
injective map will be similar to that of the bijection I1, given
in Sec. I except that we add to the image a multiple of a data
set which produces unit data on the two intersecting null line
segments o, and o,. The multiple is chosen so that the re-
sulting map will preserve the limiting value of the data at i°.
Let feM(0) and let ¢ be the field evolved from (£,0) using
the /= 0 Minkowski equation. Then restrict ¢ to o, and o,
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and add to this restriction the constant ¢,. View the resulting
restricted function as null data for the type-0 equation and
evolve these data into the entire domain of dependence of X
to get ¥. This field ¢ is smoothly extendible to o™ and o~
since its null data is. From Theorem 4, ¢ will be continuous
at i . Similarly, the solution to the type-O equation that has
unit data on the null surfaces o, and o, will also be contin-
uous at /. By placing the null surfaces o, and o, close
enough to * one can guarantee that the value of the solution
with unit null data will not vanish at . Therefore it is possi-
ble to tune the constant ¢, so that the limit of ¢ at ¥ is /().
Let (g,0) be the data for ¥ on X for this choice of ¢,. The
action of & on fis defined to be g.

We will now use a to construct the maps W, and W,.
The domain of W, consists of those elements of M(0) that
have a nonvanishing limit at *. We define W, on such ele-
ments to have the same action as the map «. That the map
W, preserves the limiting value of data at i is, of course, a
direct consequence of the construction of @. The domain of
W, consists of those elements of M (0) which fall off like 1/7.
We define W, on such elements to have, again, the same
action as the map a. That this choice preserves the 1/r falloff
rates follows from the following proposition, the proof of
which is given in Appendix B.

Proposition 1: Let feM(0) and]’z a( f) and denote the
difference f — fas A. Then the limit as 7 — o of the function
r*A vanishes for all € < 1. Furthermore if fvanishes at # then
this limit vanishes for all € < 2.

We now proceed to construct the W maps for n>2.
First, we need to show that the & th derivative with respect to
7* of a function in the range of W, will fall off like 7 — ¥+ 1,

Lemma 1: The k th derivative with respect to 7* of a
function in the range of W, will fall off like 7~ ¢+

Proof> Let f= W,(f) and A = f— f. Using (B1), the
derivative of f with respect to 7* is

d - ( 4m )d

ey Y i U AL R A), 6.1

d?*f r+2m dr(f+ ) (6.1)
which can be written as

d - d

L r—q = A), (6.2)

d;*f ( +g)dr(f+ )

where g is an asymptotically regular function that falls off
like 1/r. By expanding the right-hand side and collecting
terms we have

d ~ d
_a AD, 6.3
=)+ (6.3)
where
A — (g%(f) +(1+g) %(A)). (6.4)

The first term on the right-hand side of (6.3)—the deriva-
tive of f with respect to r—will fall off like 1/ since fis
smooth in 1/ and falls off like 1/7. From the above theorem,
we know that A will fall off faster than r~< for all e <2.
Applying the falloff theorem in Sec. IV to A we conclude
that its derivative with respect to 7, and hence the remainder
term A'Y, must fall off at least as fast as » ~  for any € < 3.
Therefore, the derivative of f with respect to 7* falls off like
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1/72. By iterating this procedure, one can show that the & th
derivative of f with respect to 7* can be expressed as

d* -

dk
—_—f=— A, 6.5
d?"‘f dr"(f)+ (6.5)

where A% falls off at least as fast as 7~ for any e <k + 2.
The k th derivative of f with respect to r will fall off like 1/
#** since fis smooth in 1/r and falls off like 1/r. Hence the
k th derivative of f with respect to # will also fall off like 1/
el

We are now ready to construct W,. Let fbe an element
of M(0) that falls off like 1/7%. Let W, be constructed for the
equation L related to the type-0 equation by the same proce-
dure as W, was for the original type-O equation. Finally,
define the action of W, on f to be Ty (W, (rf)). Here '} is the
operator, as discussed at the end of Sec. IV, that maps data
for the L-related equation to the original type-O equation
while preserving asymptotically flat evolutionto o™ and o~
Functions in the range of W, are guaranteed to fall offlike 1/
r?by Lemma 1.

To construct W, , | for n>2 we use induction. Let fbe
an element of M (0) that falls offlike 7~ "+ U, Let W, be the
analog of W, for the L-related equation and define the action
of W, ,onftobe T5(W, (rf)). Again Lemma 1 will guar-
antee that elements in the range of W, , | will fall off like 1/
rt + l.

We summarize the properites of W, in the following
theorem.

Theorem 5: The map W, constructed above is injective,
takes functions smooth in 1/r [i.e., functions in M(0)] that
fall off like » ~ " to other functions on ¥ that fall off like » "
(equivalently 7~ ") and which when viewed as time symmet-
ric data for the type-0 equation will have an evolution
smoothly extendible to o+ and o~

We are now ready to construct the 3, , maps for the
Schwarzschild evolution equation. For £= 0, we take 3, ,

= W,. For ¢>1 let feM(¢) fall off like »—" for n>¢and
define the action of fS,, on f to be
T,_\T, , - ToW.,_(rf).Heretheoperators T, are gen-
erated by the iteration procedure discussed in Sec. I'V start-
ing with the #th Schwarzschild evolution equation and
W' _ ,is the map, analogous to W, _ ., but associated with
the type-0 equation resulting at the end of this iteration pro-
cedure. The idea behind the construction of the 3, , for £>1
is as follows. We first raise the falloff rate of f to »~" by
muitiplying by . We then use W, _ ,to map the result over
to data that falls off like 7~ " for the type-0 equation. Finally,
this result is mapped to data for the £th Schwarzschild evo-
lution equation by applying T,_,T,_, - - -T,. The operator
T, ,T,_,- T, which can be roughly thought of as acting
like /3% ¢ will increase the falloff rate back to » ~ " due to
Lemma 1 for the cases when »n > £ However, for n = £the
map 3, ,isT, T, , - T,W} and since W} was not de-
fined by iterative procedure from W as were all the other
W' maps, we can not invoke Lemma 1 to demonstrate that
falloff rates are preserved in this case. However, one can use
Proposition 1 to prove a lemma for the map W similar to
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Lemma 1 which would insure that fall off rates are preserved
in this case.

We summarize the properties of 5, , in the following
theorem.

Theorem 6: The map S, , constructed above is injective,
takes functions in M(¢) that fall off like » — " for n> /to other
functions on X that fall off like » ~ ” (equivalently 7~ ") and
which when viewed as time symmetric data for the ¢th
Schwarzschild evolution equation will have an evolution
smoothly extendible to o+ and o™

VIl. THE TIME ANTISYMMETRIC CASE

We now want to comment on how the £, , map can be
adapted to handle time antisymmetric data. Using a method
similar to that presented in Sec. II1, one can show that aside
from ¢particular data sets, time antisymmetric data of the
form (0,g) for the £th Minkowski equation will smoothly
evolvetoot and o~ ifgisof the form r~ “*+3£(1/r) where f
is smooth. Given that g falls off like » ~ " for an #n> £+ 3, we
propose to extend the action of B, , to time antisymmetric
data by mapping g to 5, ,(g). We will now argue that
(0, 8,..(g)) evolved with the ¢th Schwarzschild equation
will smoothly extend to o* and o~

Time differentiation in both the Minkowski and
Schwarzschild space-times preserves solutions of the scalar
wave equations, maps time symmetric fields to time anti-
symmetric fields, and because the timelike killing fields are
smoothly extendible to null infinity, time differentiation pre-
serves asymptotically flat evolution. The action of time dif-
ferentiation on initial data can naturally be expressed in
terms of the static parts of the evolution equations. For ex-
ample, if ¢ is a solution of the #th Minkowski equation with
data (f,0) then its time derivative has data (0,(d, d,
— A+ 1)/P) f). Therefore, to show that (0,5, ,(g))
evolves to be smoothly extendible to o™ and o~ we need only
show that B, (g) = A8, _, ,(f) for some f, where A, is
the static part of the £th Schwarzschild evolution equation.
We claim that the unique choice for fis f = r’g. To demon-
strate this, recall that by definition, 5, ,(g) is given by

Bn,/(g)=f/-lf/—Z'”_I:OW(I)Wn—/(r/g)' (7.1)

Now the operator W,_,, built by iteration, is equal to
L4CoW,_ (/12 (To see this recall that w,_ T

=ToW,_ (12 and W,_,=TsW,_ ,.,.) The opera-
tor I'y I', is just the static part of the type-0 equation the W
map is based on. This same static part can be written as ', T,.

By substituting T', T W, _ v+ 2, into (7.1) we get
B..8 = _I:/— 1f/Az . ‘Forlfown —(+2) (r'*7%).
(7.2)
Now, the static part of the type-j equation can be expressed

asT;, 1Fj or fj_ 1 [';. Therefore these two expressions are
equivalent. We can use this equivalency to rewrite (7.2) as

B..8)=T,_ 1F/T/_ 1—I—‘/_2 " 'To W, _ i (r'*+%).
(7.3)

But I',_, T, is just the static part of the #th Schwarzschild
evolution equation.
By substituting A, for this term we get
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B8 =0T, T, o ToW,_ (s (")
(7.4)

By substituting A5, _, (g) on the right we get

B8 =AB,_,,(rg). (7.5)

Therefore (0,8, ,(g)) is the time derivative of the time sym-
metric data set (8, _, ,(#°g),0) from which it follows that it
will evolve, using the #th Schwarzschild evolution equation,
to be smoothly extendible to o+ and o~ . Thus we have our
final theorem.

Theorem 7: Let g be a function smooth in the variable 1/
r'and let g fall off like r—" for an n>#+ 3. Then the time
antisymmetric data set {03, ,(g)) evolved with the ¢th
Schwarzschild equation will smoothly extendto o™ and o~
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APPENDIX A: ASYMPTOTICALLY REGULAR
FUNCTIONS

As defined in Sec. V, f(x) is an asymptotically regular
function if fis smooth, the limit of f(x) exists as x — o, and
lim x”f” = 0 as x — & for all positive integers n, where f'™
is the nth derivative of £. An asymptotically regular function
is a generalization of the notion of a function that is smooth
in the variable 1/x in the sense that the derivative of such a
function will fall off, roughly, one power of x faster than the
function itself.

For functions on the initial surface £, being asymptoti-
cally regular in the coordinate r is equivalent to being asymp-
totically regular in the coordinate 7 and #*. This fact follows
from the relations that hold on 3:

i___(l __4m )_‘f_, (A1)
di* r+2ml/dr

4=(1 —27’")—‘-1—. (A2)
dr* ¥ /dr

Relation (A1) can be used to show that asymptotic regular-
ity in r is equivalent to asymptotic regularity in 7* while
(A2) can be used to show that asymptotic regularity in 7 is
equivalent to asymptotic regularity in #*.

The specific falloff behavior of the derivatives of an as-
ymptotically regular function is captured by the following
theorem.

Theorem 4: Let fbe an asymptotically regular function
and let ¢>0 be a constant such that x™f is bounded as x - «
for all m <c. Then, for any positive integer k, x9% * is
bounded as x — « forallg < ¢ + k. Here f* is the k th deriv-
ative of f with respect to x.

To prove the above theorem we need the following
lemma that gives an estimate of the second derivative of a
function in terms of the first derivative when the function is
bounded.

Lemma 2: Let Hbe a smooth function satisfying |H | < b
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for some constant 4. Then for every x,cR there exists an
se[x, — 4b/|H ' (x,)|,x,] satisfying

|H " (s)|>H'(x)%/8b. (A3)

Proof: Fix x, where H'(x,)#0. The function H'(x)
must drop to the value (1/2)H ' (x;) somewhere in the do-
main [x, — 4b /|H ' (x,)|,x,] orthebound, |H | < b,wouldbe
violated. Let e[ x, — 4b /| H '(x,) |,X,] be a point where this
occurs. Applying the mean value theorem, we find there ex-
ists an se[#,x,] satisfying

H'(xo) —H'() _ (1/2)H’'(x,)

H"(S)= —
Xy —t

(A4)

Xo—1t

By using 4b /|H ' (x,)|»x, — t we arrive at (A1).

We now prove the falloff theorem.

Proof: We prove the case kK = 1 by contradiction. The
other cases follow by induction. Assume fis asymptotically
regular and that there exists a pair ¢,c with ge(c,c + 1) such
that xf is bounded for all m < ¢ and x?f” is unbounded. Fix
msothatg — m < 1. Defineg(x) = f(exp(x)). The asympto-
tic regularity of fimplies g and all derivatives of g are bound-
ed. That x™f is bounded and x% is not implies that
h(x) = exp(mx)g(x) is bounded and that
exp( — ox)h’'(x) is not, where 0 = m + 1 — g is positive.

Now, exp( — ox)h '(x) being unbounded means 4 '(x)
must increase like exp(ox) or faster. It follows that the high-
er derivatives A" (x) must also increase like exp(ox) or
faster, therefore exp( — ox)A" (x) is unbounded. From the
definition #(x) = exp(mx)g(x) and the fact that g(x) and
all its derivatives are bounded, we known that
exp( — mx)h'” (x) must be bounded. Therefore the supre-
mum ¢, of all the a’s such that exp( — ax)A"”(x) is un-
bounded must exist and satisfy o<a, <m.

We now use the lemma to estimate the «,. Let
H(x)=h(x) and apply the lemma to get
|h " ($)]|>b,|h"(x,)]* for some constant b,. Multiply the left-
hand side by exp( — 2«s) and the right-hand side by
exp( — 2xx,) to get lexp( — 2xs)h " (5)|>b,
Xexp( — kxg)h'(x,)|%. If k<, then the resulting right-
hand side will be unbounded as x,— «, thus implying the
left-hand side exp( — 2xs)4 " (s) is unbounded as s— oo.
Therefore a, satisfies 2« < @,. Since x was arbitrary, we have
a>2a,.

To estimate a; let H(x) = exp( — Ax)h'(x) where A is
between a, and a,. Then H(x) will be bounded while H ' (x)
will not be. By applying the lemma we get
|H " (s)|>b,|H’(x,)|* for some constant b,. Multiply the
left-hand side by exp( — 2«s) and the right-hand side by
exp( — 2kx,) to get lexp( — 2xs)H " (5)|>b,]
Xexp( — kxo)H'(x,)|*. If A + k <@, then the right-hand
side will remain unbounded as x,— o, thus implying the left
side is unbounded as s— « . For values of 4 sufficiently close
to a, and values of « sufficiently close to a, — 4, all terms on
the left-hand side will be bounded except
exp[ — (2« + A)s1h ®(s) which then must be unbounded.
Therefore @, >2« + A. Since A and « are arbitrary up to the
restrictions A + k<@, and a, <A <a,, the supremum a,
must obey the estimate a;>2a, — «a,.

By induction on n, one attains the inequality

Q.ED.
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a,, »2a, —a,_,. This together with a,>c implies
a,>no for all #n. But this is a contradiction since a,<m.
Q.E.D.

APPENDIX B: A FALLOFF THEOREM

In this Appendix we prove Proposition 1 that was used
in Sec. V1.

Proposition 1: Let feM(0) and f = a( f') and denote the
difference f — fas A. Then the limit as #— oo of the function
A vanishes for all € < 1. Furthermore if fvanishes at ° then
this limit vanishes for all € < 2.

Proof: Let ¢ be the field on & space resulting from
evolving the initial data ( £,0) with the #= 0 Minkowski
evolution equation (2.3). Likewise, denote ;[S as the field re-
sulting from evolving the initial data (£;,0) with the type-0
equation having potential V(1/7). From our discussion in
Sec. V we know that ¢ is continuous at ©° and therefore
bounded in a neighborhood. Observing that ¥ (1/7) falls off
like 1/7, choose ¢, so that in this neighborhood lr;SV( 1/7)|
obeys the bound

|gV(1/7)|<e, /P2, (B1)

Let @ ,, be the unique solution that vanisheson o* and o~
of the sourced equation

)= (5)?
— ¢=V— .
(67*2 at? P ¢

In terms of the coordinates # and 0, Eq. (B2) becomes
I o SV(1/7)
udd (1 —4m)(1—amd)ir?
By integrating with respect to diz and db, we can explicitly
write @, (p) as

(B2)

(B3)

V(1/M)é . e
@ = di: db,
w (P L(pJ(l—4mﬁ)(l—4mﬁ)ﬁzﬁz v
(B4)

where the region H(p) is given in Fig. 2. [ We note here that
the integrand in (B4) blows up at  and thus threatens the
existence ¢, . However, we could express the integrand in
terms of the finer barred coordinates of Sec. V thus making
the integrand continuous at i° and hence insuring the exis-
tence of @, . This technique can also be used to insure the
existence of the following integrals in this proof whose inte-
grands appear to become singular at i°.] Next we bound
|1, (p)| in the neighborhood as follows:

V(1/Pé|
O] < |
1P, (2] H(p)J (1 —4mi) (1 — 4md)i*D?

dii db,

(B5)

FIG. 2. The region of integration
H(p) is shaded.
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~%3

<f J ST i,
H J (1 —4min) (1 — 4mbd)i20?
(B6)

The integral (B6) can be viewed as the unique solution that
vanishes on ¢* and o~ of equation (B2) with source V(1/
)& replaced by ¢,/7*>. It simple to check that ¢, (27*) also
satisfies this equation and vanishes on ¢* and o™, therefore
it must be equal to the integral in (B6). By substituting ¢,/
(27*) into (B6) we get

|q)(|)’< =C]/2;*- (B7)
Define ¢,,, by
cb(z) =¢_¢_¢(1)- (B8)

Since @5, is a homogeneous solution of (B2) (because do
and @ ,, are both particular solutions and ¢ is a homoge-
neous solution), we can express it as

P, = Heg(@) + g(D)). (B9)

The construction of the map a[ 7] requires ¢ and ¢ differ on
o, and o, by a constant. Therefore ¢ ,, and — ®;, must
differ on o, and o, by the same constant, implying g(i2)/2
restricted to o, must equal — ®,, + ¢, restricted to o, for
some c,. Because @ ,, vanishes at i° (because ¢, ¢, @ ;, each
do), we know that lim g(#)/2 = O as & - «, implying that
lim( — ¥, +¢,) =0asit— w0 ono,. Since P,, vanishes
on o~ we conclude that ¢, = 0. The bound on ¢,,, (B7),
restricted to o,, implies the following bound on g(#)

lg(@)|<e,/ (i + by), (B10)

where 7, is the value of D on o,. This, in turn, implies the
following bound on @, :

c 1 1
o <—‘( ) B11
1P, | 5 ﬂ+ﬁo+ﬁo+ﬁ (B11)
1 1
St
cF*

Therefore (#2 — 12)®,,, /* isbounded. Note that ¢ obeys a
similar bound and from (B7), so does ®.,. Hence
(72 — 12)¢/#* is bounded.

Therefore (#*2 — t?)®,, /#* isbounded. From (B7) we
can conclude that ¢, obeys the same bound. Hence
(72 — t%) (¢ — ¢)/7* is bounded from which it follows that
7*A is bounded, forcing the first conclusion of the theorem.

Now suppose that fvanishes at °. Then (F** — 1 2)¢/#*
will be bounded since ¢ is now a homogeneous solution that
vanishes at /. Therefore (72 — 1 2)¢/#* is bounded implying
there exists a positive constant ¢, such that

|@V(1/F)| <o/ P2 (42 — 1 7). (B14)
The corresponding bound on ¢, is
V(1/7)d| A
P, ()< f | di di
[P @] wpd (1 —4mit) (1 — 4md)i*p?
(BI15)
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S ; )
e J \(1 — 4mi)) (1 — 4md) ii*?

[ A gn
X w db
FAF?—12)

aef(L + L)m(d4 1) L
u 1 u v uv

1

1'22

(B16)

. (B17)

P

+ Lm@ + .f;lz_m(a))

The last integral, (B16), was evaluated to be (B17) because
it represents the unique solution, that vanishes on o+ and o,
to Eq. (B2) with the source V'(1/7)é replaced by terms on
the right side of (B14). Let ®;,, and ®,,, denote the re-
striction of ®,, and ®,, to the =, respectively. The bound
(B17) on ®,, implies that ¥, satisfies

lim (#°®q;,) =0 (BI8)

r— o0

for € < 2. Thisbound on ®,, alsoleads to the bound on g(i1)
of
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. 1 1 1
|g(u)|<4c2((,—2 + ;2-) In (7 + 3_)_ 1
i s ] Do i,

1 - 1 -
@ 4 G0, (B19)
7 02
implying that ®,,, satisfies
lim (F®y,,) =0 (B20)
for € <2. But A = ®,,, + Pq(y,, thus proving the theor-
em. Q.E.D.
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Second-order equations from a second-order formalism
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It is often assumed that Lagrangians of gravitation that are quadratic in the curvature tensor
produce field equations of fourth differential order in the metric tensor from a Hilbert
variational principle. It is shown here, for the Lagrangian given by R + R, R **, that
independent variations of the metric tensor and the torsion tensor produce gravitational field

equations of second, not fourth, differential order.

I. INTRODUCTION

It is generally argued that if terms quadratic in the cur-
vature tensor are present in the Lagrangian of a metric theo-
ry of gravity, then, excluding trivial cases that reduce to gen-
eral relativity, the gravitational field equations will be of
fourth differential order in the metric tensor if the Hilbert
variational principle is used. This argument, which is indeed
true without torsion present, is generally used either to ex-
clude quadratic terms from the Lagrangian, or to cause one
to adopt the so-called first-order formalism, in which inde-
pendent variations of the metric tensor and affine connection
are performed. In fact, it has been proven' that the only
Lagrangian in v, that yields second-order equations is given
by R, the curvature scalar, plus Gauss—Bonnet type collec-
tions of quadratic terms in the curvature scalar. Thus for any
general collection of quadratic terms in the curvature tensor,
i.e., terms with arbitrary coupling constants, this theorem
proves that the equations will be of fourth differential order.

It is the purpose of this paper to show that in a u, space-
time with independent variations of the metric tensor and
the torsion tensor, this theorem fails. This is shown for the
particular Lagrangian used in Eq. (1). In particular, calling
the equations resulting from varying the metric tensor the
gravitational field equations (GFE’s), and the term tor-
sional field equations ( TFE’s) meaning those resulting from
the torsional variations, it is shown that the TFE’s can be
used in the GFE’s to reduce the order from four to two. The
TFE’s will be of second differential order in the torsion, but
will contain third derivative terms of the metric tensor.
However, a set of four independent TFE’s will be derived
that contain no derivative higher than the second.

Il. THE FIELD EQUATIONS

There have been numerous uses of quadratic Lagran-
gians over the years.” The particular Lagrangian used here
contains, in addition to the usual scalar of general relativity,
a quadratic term in the Ricci tensor. This is the simplest
Lagrangian quadratic in the curvature tensor which will
produce propagating torsion. Details concerning how to per-
form the following variations may be found in the literature.>
Thus the variation principle takes the form

6J\/—g(R+an,R‘“’)d“x=0, (1)

where R =g"R,, and R, = R,,,,°. Also, the torsion is de-
finedas S, ;" = TI'|,5 |, where brackets (parentheses) imply
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taking the antisymmetric (symmetric) part, and the defini-
tions here and in the following are those of Schouten.* Con-
sidering variations of g,,, while holding S, " fixed yields

* *
—~ G 4V, T 4 nH* 4 SYM[VU(T"’“’ + T
nv

*
+T7) 4 1V, (C*™ 4 C™ — cm)] =0, (@

where
V, A* =V, A" +25,4% (3)
H”V=£g"vRaﬁRaB—R“aRva—R”"RUV, 4)
ToPr = §obr | §Pgar _ §oghr, (&)
Co®r = _ YR 4 g=V, R4 4 2R PS5, 6)

and where G " is the Einstein tensor. It has been assumed
that Vg, = 0so that

Pop’ =15} + 8.5+ 25%p, N
where {gﬂ} represents the Christoffel symbol.

As is often stated, (2), with (6), shows that the GFE’s
are of fourth differential order in the metric tensor. With no
torsion, and assuming that V,g,, = 0, this conclusion is in-
escapable. With torsion present, however, the TFE’s impose
the constraints necessary to cause the higher derivatives to
drop out of the GFE’s.

To show this, consider the TFE’s which are obtained by
varying S, " while holding g, fixed. This yields, from (1),

ANT[T*% — T#ér= 4 TP
af

+ n(C" 4 CPr* 4. C7P*)] =, (8)

where ANT,; implies antisymmetrization in af.
From this, it is straightforward to show that (8) may be
put in the form

T1e — _ yCelbr, (9)

Also, using the definition

DY =TFr | nCP, (10)
one may show that

P{D[aﬂ]7}=0, (11)
where P stands for permutation over all the indices. This
form will be used shortly. :

Now turn back to (2), which with (9) and (10) can be
written as
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* %
—G¥ 4V, T* + nH* -V, D* =0, (12)

To boil this down, first note the identity,’ for any tensor 4 %,

V.,V,4=1R,,,°4"* + 1R, 4% — S,V 4
(13)

vup vup

When this is used in (12) with (6), one obtains
*k
vV, D*°/n= —R¥ R?—R™R,,

+ 25,7V, R ® + 2TV, R,”
+ 2RV, TH 4+ V,TH/n + 2S,(T**/n
— VR ™ 4 2R."T*°) + 2S*V,R*". (14)

This simplifies with (5) and the GFE’s (12) become, using
(14),

— G* 4+ n(H* +R*,R™
*
+ R, R — 2RV, TH) =0, (15)
or,
— G¥ 4 nN* =0, (16)
N =ig"R“R,; —R*R", —R*,;"R.  (17)

Thus it is evident that the GFE’s are of second, not
fourth, differential order. Moreover, (16) and (17) show
that the field equations are much simpler than their original
form (2) due to the use of the TFE’s. For weak fields, the
quadratic terms will be small compared to the linear terms
(inR,,,") and the field equations reduce to the same form as
those of general relativity, but, of course, G*" contains the
torsional terms.
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Finally, consider the TFE’s (9). It is seen that they are
of second differential order in the torsion tensor, but they do
contain third derivatives of the metric tensor. However, us-
ing (5) and (6) with (11), and performing the permutation,
one obtains

*
P{Saﬁy—}- nV"(V¢ Tﬂy¢) _ n(R¢aTB¢‘V _ R¢aT7’¢B)} e O,
(18)

which contains no derivatives of higher than second order.
However, (18) represents only four independent equations,
and therefore, the total set of TFE’s still contains third de-
rivatives of the metric tensor.

The main conclusion of this paper is contained in (16),
which shows that the GFE’s are of second differential order.
This is particularly useful when considering coupling to
matter, since, e.g., Havas® has shown that fourth-order
GFE’s (resulting from a quadratic Lagrangian) lead to an
incorrect equation of motion for an extended source. The
work presented in the present paper does not constitute a
complete theory at this stage because the coupling to matter
has not been considered. This area of investigation is cur-
rently under way.

'D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational
Principles (Wiley, New York, 1975), Sec. 8.4.

2See, e.g., V. Szczrba, Phys. Rev. D 36, 351 (1987), and the many references
contained therein.

SR. Hammond, Gen. Relativ. Gravit. 20, 813 (1988).

*J. Schouten, Ricci Calculus (Springer, Berlin, 1954).

5See Ref. 4, p. 140.

SP. Havas, Gen. Relativ. Gravit. 8, 631 (1977).
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It is shown that intermediate statistics do not correspond to any physical process. The
stationary probability distributions of intermediate statistics are not compatible with any
mechanism which allows a variation between Fermi-Dirac and Bose-Einstein statistics. The
binomial and negative binomial distributions, characterizing Fermi-Dirac and Bose-Einstein
statistics, respectively, transform into the Poisson distribution, descriptive of classical statistics,
as the number of energy cells increases without limit. These distributions are shown to be the
laws of error leading to the average value as the most probable value.

I. INTRODUCTION

Over the years speculations have been made on an inter-
mediate statistics lying between Bose-Einstein (BE) and
Fermi-Dirac (FD) statistics. Instead of the occupation
number of the energy levels being infinite or one, as in the
case of BE or FD statistics, respectively, the occupation
number would have some finite value. Such an intermediate
form of statistics was first proposed by Gentile' who com-
pared its thermodynamic properties with the two known sta-
tistics. Basing his argument on quantum mechanical consid-
erations, Sommerfeld” concluded that the only application
that intermediate statistics may have is in the case where the
number of particles n equals the number of energy levels or
“cells” d. Miiller’ treated intermediate statistics from a
purely academic point of view. Both Wergeland® and Schu-
bert® contended that it did not matter whether the cased = n
or d = o« was considered since both reduce to BE statistics.
ter Haar® argued that by putting the occupancy number
equal to the number of particles there should be no difference
between intermediate statistics and BE statistics simply be-
cause there are not enough particles to make the differences
apparent. Finally, Guénault and MacDonald’ showed how
intermediate statistics could be exploited to make a gradual
transition from FD statistics to BE statistics. The thermody-
namics of intermediate statistics was also commented upon
by Landsberg.®

The argument of ter Haar,® and also of Sommerfeld,>
Wergeland,* and Schubert,’ appears to go against the grain
of certain limit theorems in probability theory which assert
that as the number of indistinguishable particles increases
without limit, while the number of energy cells remains fi-
nite, the probability distribution should converge to a nor-
mal one.® According to the above mentioned authors, it is in
this case where the differences between the intermediate and
the known forms of quantum statistics should be manifested.
Rather, according to the limit theorems of probability theo-
ry, the statistics should become classical in the limit.

In this paper, we show that BE statistics arises only in
the limit as d = 0. All values of d, between one and infinity,
give rise to intermediate statistics which, however, cannot be
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described by stationary probability distributions that tend to
the binomial and negative binomial distributions as d— 1
and d— o, respectively.'® In other words, there is no sta-
tionary probability distribution which is compatible with the
physical processes that generate FD and BE statistics. Real-
izing that there is no purely thermodynamic argument that
can be given in favor or against the existence of intermediate
statistics, we employ a statistical argument by showing that
the stationary probability distribution can only satisfy the
recursion relation obtained from the time independent mas-
ter equation when it coincides with the binomial, negative
binomial, or Poisson distribution corresponding, respective-
ly, to FD, BE, or classical statistics. The Poisson case was
overlooked by all the previous studies on intermediate statis-
tics. Classical statistics will be shown to emerge as the num-
ber of energy cells increases without limit independently of
the magnitude of the occupation number. It can never de-
pend on the size of the particle number since the conclusions
drawn from the generating function and its binomial expan-
sion, in which the particle number appears as a mere index,
must lead to the same conclusions. This lays to rest the possi-
bility of there being still yet other types of particles with
spins different from semi-integral or integral values.

Il. DERIVATION OF THE DISTRIBUTION FUNCTION
Consider the generating function
- d m [1_(qs)d+1] m
Z(9) =( ( s)") = (L————) , (D
szz‘,o 9 (1 —gs)
without necessarily requiring that p + ¢ = 1. Two limiting
cases are known to have direct physical meanings: In the

cased = 1 and ¢ = 1/p — 1 the generating function reduces
to

Eep (8) ={P(1 +qS)}'", (2)

which is the generating function for the binomial distribu-
tion; while for d = o and p + g = 1 it becomes

Epe (5) = (p/(1 —¢9)7, (3)
the generating function for the negative binomial distribu-
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tion. Using the binomial expansion in (1), the numerator
and denominator can be expanded as

[1—(g9]" = i (— 1)*(’2)(%)“" 4
k=0
and
[1—gs}™ "= i(_.m>( —gsY, (5)
j=o\ J

where (7™) = (—1Y(™*/~") and a=d + 1. The prod-
uct of the two series (4) and (5) can be written as the convo-
lution

dm
E(s) =p" Y dHmm,d)(gs)" (6)
n=20
since only dm + 1 terms in the sum are different from zero.
The coefficient

(n/al m+n—ak— 1)<m)
) _ Y
d(nm,d) = AZO( 1) ( 1 o) N

where [n/a] is the largest integer <n/a. The probability of n
fi(nm,d) = I (n;m,d)q'p” (8)

is simply the coefficient of 5" in (6).

Apart from the missing ( — 1) this coefficient was
found by ter Haar.® He observed that for d = 1, #(n;m,1)
= () while for d= o, Hmm,0) = ("*";") since
d = o means that we must take only the £ = O termin (7).
ter Haar, like Wergeland® and Schubert,” remarked that it
did not make any difference whether one took d =n or
d = «» and went on to conclude that “any effects arising
from intermediate statistics should be spurious.” However,
to set d = n has no meaning since n, the realization of a
random variable representing the number of particles, can
take on all values from 0 to dm. Rather, the occupancy num-
ber d is fixed in advance so that the only way for the coeffi-
cient 3(n;m,d) to reduce to the binomial coefficient and

d’"(m—{—n—l

PS5

to coincide with the generating functionistosetd = . In
fact, it is apparent from the generating function (1) that any
finite value of d will lead to a finite number of terms in the
binomial series expansion and the resulting probability dis-
tribution will be different from the negative binomial distri-
bution. In other words, BE statistics arises only in the strict
limit d = . It is important to emphasize that this conclu-
sion could have only been reached by working with bona fide
probability distributions, or generating functions, rather
than with the usual binomial coefficients. '’

In the case d = 1, application of the binomial theorem
gives

m

z(’:)q"=(1+q)'"=p-"' (9)

n=0
or p = 1/(1 + q). In the other extreme limit where d = oo,
the binomial theorem gives

2(_nm)( —@)'=(—¢q)""=p "

n=0

(10)
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In the limit where m — o and g— 0 such that gm — A we have

A =ét=p . (1)

n=0 n!

The fact that the generating function (1) is the mth
power of the ratio p[1— (¢s)°]/(1 —gs) means that
f*(n;m,d) is the distribution of asum S,, = X, + - + X,
of m mutually independent variables with a common gener-
ating function. In the case d = 1, each variable X, assumes
the value O with probability p and the value 1 with probabili-
ty pq such that p(1 + q) = 1. For d = «, the random vari-
able X, can be thought of as the number of failures following
the (i — 1)st and preceding the ith success. The sum S,, is
then the total number of failures preceding the mth success.
The probability that there are exactly » failures preceding
the mth success is Pr{S,, = n} =f*(m;m,), where
S,, + m is the number of trials up to and including the mth
success.

For the historical record, we note that the derivation of
the probability distribution (8) can be traced back to De
Moivre for the probability of obtaining a score m 4+ nin a
throw of m dice.'' Suppose that each of the random variables
X, can assume only a finite number of values, say 0, 1, 2, ..., d
and that each occurs with probability 1/a where a =d + 1.
As far as intermediate statistics is concerned, X; can be
thought of as level { which can accommodate d particles. In
the case d = 1, the probability of there being a particle is
simply . The probability that S, = n is

{n/al —ak—1
e

m—1
(12)

and the probability that the levels will contain no more than
n particles is
1 [n/a)

—ak
peis.n) =2 S o ()T, )

In the limit as # — « and a— « such that their ratio n/a - x,

(13)

R
Pr{S, <n} — k§=:o( 1) X (x—k)m, (14)
where the sum is over all k¥ for which 0<k < x. This expres-
sion was first derived by Lagrange'' and states that in the
limit, the sum of m independent random variables is uni-
formly distributed in the interval 0,1 with a constant density
of one.'? In the case d = 1, Pr{S,, <n} = (172" (" ")
while in the case d = « with n— o such that their ratio
tends to a constant, x < 1, Pr{S,, <« } = (1/m!) (n/a)".
We will now show that distributions of the form (12)
are not compatible with the physical processes that generate
the known forms of physical statistics. Said differently, there
is no stationary probability distribution that can transform
from one statistics to the other with the variation of a charac-
teristic parameter.

lll. CRITERION FOR THE STATIONARY PROBABILITY
DISTRIBUTION

The stationary probability distributions can be derived
from a dynamical equilibrium between the rates of adsorp-
tion, B(m — nn), and desorption, an, on a lattice of m sites,
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inthecasen = lor,inthecasen = — 1, thetworatescanbe
thought of as those for absorption and emission (spontan-
eous + stimulated) of radiation, as in the Einstein mecha-
nism.'? In the intermediate case, 7e[ — 1,1], where an inter-
mediate form of statistics should result lying between FD
and BE statistics. However, the intermediate statistics is it-
self spurious insofar as the stationary probability distribu-
tion (8) provides for only three constant values of 5. All
other values of 77 depend on the number of particles » and
consequently do not correspond to the physical processes
under consideration. Figuratively speaking, one may consid-
er the values of 7 to be “quantized” which correspond to
stationary probability distributions belonging to exponential
families of distributions.

The master equation governing the elementary transi-
tions is
fing)y=a(n+ 1) f(n+ L)

+BIm—n(n—1]fln—10

— lan + B(m — nn)] f(n,1). (15)
If (8) is to be the stationary solution to this equation then
g = B /a and setting equal to zero the coefficients of the dif-
ferent powers of B /a give

7?:Ln__(n—{—1)19(}1-}-1;m,d) (16)
n n d(n;m,d)
and

n= m n F(nym,d) (17

n—1 n—18%n-1md)’

Together, (16) and (17) imply that 1 satisfies the recursion

relation

my (2 — 2t md) _ . d(mmd)
Hnym,d) Hn— 1;md)

which has been obtained by eliminating 7 between the two

equations.

Not any coefficient #(n;m,d) will do, for it was sup-
posed that 5 is a parameter and independent of #. This means
that any acceptable value of the ratio of the ¢ ’s must produce
afixed value of 5. There are only two cases, plus one limiting
form, for which this will be true. Hence there is no stationary
probability distribution, describing an intermediate form of
statistics, which can be derived from the stationary condi-
tion of the master equation (15). The following three forms
of statistics exhaust the possibilities and there is no addi-
tional form that could describe another kind of particle.

For 5 = 1, expression (16) reduces to

(18)

m—n_gn+ml) _ (1)

, (19)
n+1 H(n;m,1) ¢
corresponding to FD statistics, while for 7 = — 1 there re-
sults
. m+4n
m+n_dn+meo) _ (75 ’ (20)
n+1 Hmm,0) Y

corresponding to BE statistics. In addition, there is a third
case, 7 = 0, which has gone unnoticed by all the authors
cited above. For 7 =0 (16) reduces to
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m _ Han+lmd) mt'Y/(n4 1)
n+l  dmmd)  m/n
for which the stationary probability distribution (8) trans-

forms into the Poisson distribution

, (21)

fi(n) =_£_qﬂ)_e*4'", (22)
n!
It will now be appreciated that the Poisson distribution (22)
is a limiting probability distribution and yet, remarkably
enough, it satisfies the recursion formula (16) exactly.
Unlike the binomial and negative binomial distribu-
tions, corresponding to d = 1 and d = «, respectively, the
Poisson distribution depends only on the fact that m is suffi-
ciently large or, more precisely, as m — o and ¢— O such that
gm = A. The generating function (1) can then be written as

E(s) = ((1 —A/m)[1 — (ﬁ.s/m)"])”"
1 —As/m

Passing to logarithms it can easily be seen that the right-
hand side of (23) tends to e ~***, independently of the
magnitude of the occupation number. We also emphasize
that there can never be a condition on the number of parti-
cles which appears only as an index in the convolution (6) of
binomial series expansions (4) and (5) and not in the
expression for the generating function (1) itself. In the limit
as m— oo, we have

[n/a] { k(m>(m+n_ak___, 1) m"

kg'o( ) k m—1 - n
where terms of the order m ~“ have been neglected. This
shows that BE statistics transforms into classical statistics at
a much earlier stage than FD statistics with the increase of
m. It also shows that the distinguishability or lack of distin-
guishability of the particles depends on the fact that the
number of energy cells increases without limit independent-
ly of d.

The average value 7° can be calculated by differentiating
the logarithm of the generating function (1)

(23)

(24)

InZ(s)=mlnp+min[l — (g5)°] —mIn(1 —gs)
(25)
with respect to s and evaluating the expression at s = 1. We
then obtain
rF__9 _,_4
m 1—g 1-¢°
which was first derived by Gentile.! For a =2 (d = 1),
expression (26) reduces to
' =mg/(1+q), (27)

while for 2 = « it becomes

a

) (26)

7' =mg/(1 —q). (28)

A general expression for 7’ can be found with the aid of
expression (16). Multiplying (16) by ¢” and summing over
n gives g = n*/(m — 7n’) or
n=m/(n+q"). (29)
We now turn to a thermodynamic analysis that will al-

low us to derive an expression for ¢g. This will enable us to
identify (27) and (28) with FD and BE statistics, respec-
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tively, while (29) will be identified with intermediate statis-
tics for pe( — 1,1).

IV. GAUSS’S PRINCIPLE AND THE SECOND LAW

There is nothing thermodynamically prohibitive to re-
stricting the occupancy of the energy levels. Yet while ther-
modynamics makes no pronouncement on the existence or
nonexistence of intermediate statistics, it can clarify some of
the results obtained above. Furthermore, we will show that
the average number of particles coincides with the most
probable value only for the three known statistics.

With the aid of Gauss’s principle, the stationary proba-
bility distribution (8) can be cast as a law of error for which
the average number of particles is the most probable value.
The law of error has the form'®

Inf(n) = — (n—7) i—z — L) + Z(n),
n

(30)
where .7 (7°) is the entropy and 2 (#n) is the stochastic en-
tropy. According to the second law,

d¥ 4% 3% d¥ —p+e

dne o 9% dw T
where the average energy & = 7i'¢, u is the chemical poten-
tial, and T is the absolute temperature measured in energy
units. Introducing the probability distribution (8) into the
left-hand side of (30) and comparing terms that are indepen-
dent and dependent on #n give

(31)

dlen(m—m‘f)=_1nq, (32)
dan’ n’

i 47 —f’=ﬂln(—m—_n—’—l$)=mlnp, (33)

an’ 7 m

and

2(n) =In F(n;m,d). (34)
Equating (31) and (32) results in

Ing= (u—e€)/T. (35)

For 7= —1, we have ¢g=n/(m+7n’) and
p=m/(m+R’) while for =1, ¢g=r/(m—7%’) and
p = (m—7r*)/mwithg = 1/p — 1. Interms of the probabil-
ities of “success” and “failure,” with p +g=1, we get
Pp=¢q/(1+¢q) and g§=1/(1+g). Finally, in the case
1 = 0, we have p = e ~ ¥ where ¢ = 1°/m or, in terms of the
normalized probabilities, p =pandg=1—e %

For values of 770, Eq. (32) can be integrated to obtain

F#)y= —nrlnw’

— (1/9)(m — nr’)In(m — yn*) + const. (36)
Equating the derivative of (36) with (31) yields
A =m/(e*~*T + 7). (37)

Introducing (37) into (36) results in

F(#) = (& —unr*)/T+ (m/m)In(1 + e~ <—#7T),
(38)

where we have set the constant in expression (36) equal to

(m/1)in m. Furthermore, from thermodynamics, we have
T.¥Y — & + u#° = PV so that the last term in (38) is the
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product of the logarithm of grand partition function, 1, and
the absolute temperature,
PV=TInQ, = T(m/m)n(1 + e~ “~#/T). (39)

Forp=1land n = — 1, Q, is the grand partition function
for FD and BE statistics, respectively. Expression (33) can
now be written as

mlnp= — PV/T. (40)
To derive an expression for the stochastic entropy (34),
we take the logarithm of (16) written as
Hn+ I;md)
F(n;m,d) ’
Then approximating the finite difference by the differential
dind _ ln(m — nn)
dn n
for n> 1, we get

m—nn=(n+1)

(41)

In Hmym,d) = —nlnn — (1/9) (m — gr)In(m — nn)
(42)

provided 17#0, upon integration. For n = n°, the stochastic
entropy (42) coincides with the entropy (36). But since the
recursion relation (16) is valid for » = 4 1, in addition to
7 = 0, the stochastic entropy will coincide with the entropy
at n = n° for the negative binomial and binomial distribu-
tions, corresponding to BE and FD statistics. Only for these
distributions, and the limiting Poisson distribution, will the
stationary distribution f*(n) be a maximum at n = #°. In
other words, these distributions are the laws of error leading
to the average value as the most probable value. Let us now
consider the limiting form in greater detail.

The classical limit is achieved by examining the entropy
expression (36), or equivalently,

L (#) = (m/m)In(1 +qn) — [mg/(1+qn)]lng (43)

in the limit as g—0 and m — « such that gm—#°. The en-
tropy expression then reduces to

F(A°) -7 — 7 In(A*/m), (44)

which is seen to be independent of the parameter 7. In the
same limit, the stochastic entropy (42) tends to

S(n)->n—nln(n/m). (45)

Comparing expressions (44) and (45), in conjunction with
the form of the probability distribution (30), shows that the
average value 7° coincides with the most probable value of n.
The stochastic entropy (45) contains the logarithm of the
term m” which it would correspond to in classical statistics
as the number of ways one can distribute » particles over m
cells. The term # In n — n=In n!, according to Stirling’s ap-
proximation for sufficiently large n, takes into account the
fact that the number of arrangements has been over counted
exactly n! times.

+ const = % (n),
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The singular Lagrangian system with higher derivatives is analyzed with the aid of the
Ostrogradski transformation and the Dirac formalism. The formulation of canonical theory is
developed so that the equivalence between the Lagrange formalism and the Hamilton one is
maintained. As a practical example, the acceleration-dependent potentials appearing in the
Lagrangian of two-point particles interacting gravitationally are dealt with and the equivalence
between the two Hamiltonians that follow from the two Lagrangians which are related by the
coordinate transformations is shown. It is also shown, when the constraints are all first class,
that a consistent generator of gauge transformation is constructed. Typical examples are given.

I. INTRODUCTION

Dynamical systems described in terms of higher deriva-
tive variables have been investigated for a long time in con-
nection with nonlocal field theory’ and relativistic dynamics
of particles moving in a field, and so on.” Recently, dynami-
cal models of a Lagrangian with the higher derivatives have
been acquiring importances motivated by gravity theory
with a Lagrangian containing the quadratic term in the cur-
vature tensor® and supersymmetry theory in higher dimen-
sions, in spite of the possibility of unitarity violation associat-
ed with ghost states.

The canonical formalism for the system with higher de-
rivatives was presented by Ostrogradski.* Analysis of a sin-
gular Lagrangian with higher derivatives involves more than
that of an ordinary singular Lagrangian, that is, it is not a
trivial extension of the ordinary theory.

In this paper, we shall develop the canonical formalism
of the singular Lagrangian with the aid of the Ostrogradski
transformation and the Dirac formalism® for singular La-
grangians. Our considerations are mainly concerned with
the relation between constraints and gauge transformations
of the system and the equivalence of the Lagrange formalism
to the Hamilton one. In Sec. I1 it is shown that all secondary
constraints derived from the conditions of primary con-
straints, being stationary, are classified into two groups; one
group being contained in equations defining momenta in the
Ostrogradski transformations and other group being on the
outside of them. The latter constraints correspond to the
constraints in the ordinary singular system. If the order of
the highest derivative in L is reduced by adding a total time
derivative term, the number of constraints are also reduced.
The relation between the number of the constraints and the
order of the highest derivative of the additive term is given.
The addition of the total derivative term to the Lagrangian is
confirmed to have no physical effect, even in the theory with
higher derivatives.
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In the case of the particle systems interacting with the
gravitational field, acceleration terms appear, in general, in
the interaction Lagrangian when calculated by means of the
perturbation with respect to 1/c, ¢ being the velocity of light.
If we eliminate the acceleration « in the Lagrangian by the
use of equations of motion of the lower-order Langrangian,
correct equations of motion cannot be obtained.® In Sec. I11,
we treat gravitational interaction. In the post Newtonian
approximation (1/c® order), there occurs a gauge-depen-
dent interaction potential of the form’

“zaR g mmna{e 05 o)

a b#a

where y is a gauge parameter and G is Newton’s gravitational
constant (detailed definition of notations are given in Sec.
I1I). The acceleration terms in this potential can be dropped
by adding a total time derivative term,

z Zm my,(n,, v, )]

a b#a
However, even when y = 0, a post-post-Newtonian in-
teraction potential contains acceleration terms®

DRI RIS

bs#a ab

{ -Gy m"],
d#c rc

which occurs in a physically acceptable coordinate sys-
tem.”® This potential cannot be transformed to an accelera-

. tion-independent one by adding total time derivative terms.

So we shall investigate the problem of the acceleration-de-
pendent gravitational potential from the standpoint of Ham-
iltonian dynamics based on the canonical formalism. We
show that the canonical equations of motion in terms of
Dirac brackets coincides with the Euler-Lagrange equations
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derived from the Lagrangian with the acceleration terms. A
relation between Lagrangian systems with acceleration
terms and without them is obtained. Two Hamiltonians de-
rived from the Lagrangians with and without acceleration
terms are related to each other by a canonical transforma-
tion and they are physically equivalent.

On the other hand, as shown by Schifer,'° the elimina-
tion of the acceleration in the Lagrangian by the use of the
equations of motion is permitted in the gravitational case,
because it is equivalent to a coordinate transformation. Then
the Dirac bracket formalism allows one to exhibit the equiv-
alence between the two Hamiltonians that follow from the
two Lagrangians that are related by the coordinate transfor-
mation.

In Sec. IV, for a gauge invariant system having only
first-class constraints, we shall give the procedure to con-
struct the generator of a gauge transformation. Though the
procedure is almost the same as that in the ordinary case,''
we must show the mutual consistency of the transformations
among variables with different orders of derivatives. The
consistency condition will be examined. In Sec. V, typical
examples will be presented for illustration of Sec. IV.

il. CANONICAL FORMALISM FOR SINGULAR
LAGRANGIAN WITH HIGHER DERIVATIVES

We consider a system with » degrees of freedom. Let us
assume a Lagrangian of the system with higher derivatives to
be given by

Wy
L (q’,q',..., q ),

2.1)
where i = 1 ~n and
(s); ds .
g=—07d (= 1~N).
dt
We suppose the extended Hessian matrix
2
4,=—2L (2.2)
(M), (N,
dq dg

to be singular and its rank tobe n — r.

Now, we apply the Ostrogradski transformation and the
Dirac formalism® for constrained systems to this singular L.
Then, it is shown that the Lagrangian formalism is trans-
formed to the Hamiltonian one by using a total Hamiltonian
given by Dirac.

If the order of the highest derivatives in L is changed by
adding a total time derivative term, the number of con-
straints is also changed. It, therefore, will be worthwhile to
reveal the relation of the number of constraints to the order
of derivative of the total time derivative term.

The Ostrogradski transformation introduces canonical
. (s);
momenta p¢* conjugate to g,, = ¢

bi = ’
(N);

dgq

(2.3)
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on_ 0L ..
Pl(" D= _p’g.)

(5);

dq

(s=1~N-1), (2.4)

and gives the transformation from the ‘“‘velocity” phase
space (VPS) to the phase space (PS);

o @aN-1y
994, q )
cy(0) (1) . (2)

i i i i (N—1)
= (G0ys8(1) 12y s QN — 1)iDi 3Pi i seesDi )

. o (5);
where ¢, =4, q|,, = ¢ ,(s = 1~N). The Hamiltonian is
defined by

! (5) i (N)
H= pr G9is+ 1y -—-L(q,..., q)
s=0

The summation convention is assumed for dummy upper
and lower indices. Since 4 is singular, (2.3) is not solvable

2.5)

Ny, .
for all ¢ . But, we have r constraints

é2 (90, sQ(n):---»Q(N—l)’P(N_”) =0 (a=1~r), (2.6)

which are derived from (2.3) and called the primary con-
straints. Using these constraints we obtain a canonical Ham-
iltonian H, and a total Hamiltonian

HT=H0+UG¢?1 ’ 2.7

where v® are undetermined multipliers. It is noticed that the
primary constraints ¢2 ~0 depend only on p{” =", not on
P (s <N — 1), as shown later.

With the aid of H,-, we can formulate in PS the Hamilto-
nian formalism equivalent to the Lagrangian formalism. In
order to show it, let us find the explicit form of H,. Since the
rank of matrix 4, is n — r, without loss of generality, we can
assume

pN— D= JL (a=1~n—r), 2.8)
(N,
dq

. . (N)"
in (2.3), to be solvable with respect to ¢ =47, _,, and
obtain
. a M. ag i i i (N—-1) sa
Give = 9 =G0y 90y Gcn—1)Pb iv—1)

(2.9)

where b=1~n —rand a =n — r+ 1,...,n. The substitu-
tion of (2.9) into (2.5) yields

H=P§N_ Dfe +P<(zN_ 1)Q‘(’N-- n

N-—-2
+ 2 P =Ll g (2.10)
s=0

This H is linearly dependent on ¢%, _ ,,, since

OH =p<~—')_( oL )
Iin_1) 9Gin-1)

. "
Gnv_n =S

is independent of ¢¢y_,, (see Appendix). Then H can be
expressed as
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(N— 2)

H = Hy(q(0) (17 P50 s ey

+q¢(zN—1)¢g (Q(O)»-'-’q(N~1)’P N=by, (2.11)

with

Hy=H|.  _o> (2.12)

#=p 0 — L (2.13)

) aqt(zl\’—l) dWv_n=r*
As proved in the Appendix, (JL /947y _, )|q‘(,N~ =t and
also ¢, are independent of ¢y _ . The constraints

# =0 (2.14)

are the primary constraints (2.6). Thus H can be expressed
in terms of variables g, ,....g\y _ 1,0\ pL Y Y, if the pri-
mary constraints are used. The total Hamiltonian H is giv-
en by
H,=H|,

P .
AGN-—1)= v

(2.15)

By resorting to the Dirac formalism® on the constraints, the
Hamilton equations of motion are represented as

) JH )
9 =5(—;zq’(s+1) (s=0~N-2), (2.16a)
Pi
. a OH ;
gN-1) _m =fqoys- ’q(Nwl)’pb D),
(2.16b)
- 5'HT u
Iqn-1 = c?p(N‘” =U", (2.16¢)
JH
PO = ——"= or (2.16d)
w0, 94,
pgx): _ aHT ~ p(s_])+ 3L
aql(.s) aq(.s)
(s=1~N—-1), (2.16e)

where the weak equality ~ means to impose ¢ = 0. On the
right-hand sides of these equations and in the following
equations up to Eq. (2.22), the derivative of L with respect
to g{,, means

JL _{ ad
5(1';.;) aq“)
(s=0~N).

——L{qoy -G v 1) 9w )}

vy =v"

In these equations, only (2.16d) is a dynamical equation, but
all other equations together with ¢° = 0 are equivalent to
* the Ostrogradski transformation (2.4). Equation (2.16c)
indicates for H to be equivalent to H of (2.10) or (2.11).

In the Ostrogradski transformation, if some equations

k
of (2.4) are independent of (N(}r ) (k>0), they are regarded

as constraints. When the Ostrogradski transformation (2.4)
gives such constraints other than the primary ones, all these
constraints can be derived from the condition of the primary
ones, 2 = 0 being stationary, as shown below. In (2.4), the
relation for s = N — 2,
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+ Da

contains at least o g  and hence does not yield constraints,

since det(4,, ) #0 by assumption. For a particular «, sup-
pose

pa = — (2.17)
aq?N—l)

to be the constraint. Then, from (2.10), (2.13), (2.16a)-

(2.16e) it follows that the condition of ¢2 being stationary
turns out to be

(o m ¥y _d Ok
9qn_1, dt BQ(N N

The Poission bracket { , } is defined by

N1 af dg af odg
-y (a:s) Frol )

apr@) aqis)

and the fundamental Poisson brackets are
{qis) , ;s,)} - 6;6;1’ {q‘('s) ,q{s')} = {P,(S), ;S')} =0
(,j=1~nss =0~N-1).
On the other hand, we have

{¢2’H}={¢2,Ho}+9€N_1){¢g’¢g}~ (219)

Since ¢, and H, are independent of ¢7y_,, and (2.17) is
also assumed to be so, we obtain from (2.17), (2.18), (2.19),
and the form of ¢°, of (2.13)

{g0.431=0. (2.20)
Hence, the condition of ¢° ~ 0 being stationary,
¢ =140.Ho} =0 (2.21)

is equivalent to (2.17) which is a “secondary” constraint.
Furthermore, if

aq?N—z)

(N—2)

— P (2.22)

N+ k
does not contain any ( c} ) (k>0), we can prove that (2.22)

also is equivalent to
¢z ={¢.Hy} =0, with {¢%,45}=0. (2.23)
It should be noticed that if (2.17) is not a constraint, (2.22)

. . N+ R .
necessarily contains 3 (k> 0) and then is not the con-

straint. Thus it has been seen that all constraints contained in
the Ostrogradski transformations are successively derived
from the conditions of the primary constraints being station-
ary. If the relations for s>M in (2.4) are constraints
@5~ = 0 but the ones for s < M are not, there exists ¢3 such
as {#3,65 ~ ™} 0. In this case the condition of 4} ~ ™ being
stationary no longer yields new constraints, as is well known
in the Dirac algorithm using H 1, and all the constraints ¢,
following #2 are exhausted with the constraints contained in
the Ostrogradski transformations.
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From the Hamilton equations (2.16) and (2.13) wecan
reproduce the Euler-Lagrange equations derived from L of
(2.1)

N

>

s=0

ds
—1)y—
( dt*

IL\_y.

(2.24)
(s);

dq

Thus it has been verified that even for the singular Lagran-
gian with higher derivatives, the Hamiltonian formalism
based on the Ostrogradski transformation is equivalent to
the Lagrangian one.

Next we investigate the relation between the number of
the constraints and the number of the canonical variables for
asingular Lagrangian obtained by adding a total time deriv-
ative term dF /dt. By adding F to L, the forms of p!* and H
change. The Euler-Lagrange equations (2.24), however,
are not affected by it, provided that the boundary conditions

(s); (s);
8q (t,) =08 q (1,) = 0for all s are imposed in the variation

principle. Further, it is shown that the addition of Fgives no

effect to H, in spite of the change of its.functional form. The

changes of momenta Ap!* due to the F term are given by
Ap!® = I9F ,

(s5);

dq

and the change of Hamiltonian AH vanishes;
(s+1); .
AH=Y Api” ¢ —F=0.

So, we may conclude that the addition of F brings no phys-
ical effect.
Now let the Lagrangian be

. on d
L= L0<q,q,..., q ) +—F

. (N-D
(05" wen=1.
dt

(2.25)

Here we assume, for simplicity, that the Hessian matrix for
L,
on, ;)

dg dg
is regular. By applying (2.3) and (2.4) to this L, the mo]-

(2.26)

=

det{#"*,¢"} = det

b e e = ] S - - - - - -

—_A°

= (— DV M(det A°)2 V=M 320
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AO

menta conjugate to ¢(,, turn out to be

ar
pl(x) = T (M<S<N— 1) s (2.273.)
Bq'
(Mfr) j— aF
! (M — ryi
q
r da—] aL
+ _ 1 a—1 0
azl ( ) dt"—] (M —r+a),;
q
(I<r<M) . (2.27b)

Depending on N> 2M or N<2M, there are two cases con-
cerning features of the constraints.

(i) The case of N<2M. The relations (2.27) give the
2n(N — M) constraints

¢yEP§N—u~1) - aF
aql(Nfu~l)
—-M~Nz+u+l(_l)a*ldafl (9L0
= dte! (N—u+a—1),
q
=0 (O<u2N-2M-—-1). (2.28)

As mentioned before, these constraints ¢! (u«>1) are also de-
rived from the stationarity conditions of the primary ones ¢°.

In general, the constraints ¢’s are classified into two
classes. A ¢, is defined to be first class if {¢,,4,}=0
mod (¢, ) for all ¢’s and {¢,,H} =0 mod (¢, ), and the other
1s second class. In order to treat the second-class constraints
6, = 0 consistently, we should use the following Dirac
bracket in place of the Poisson bracket:

{fg}* ={fg} — {£6.1(C~"){6,.¢},
where (CHe satisfy the relationship
{6,,6,}(C ~")™ = &“ If we work with Dirac bracket, we can

put 6, =0 strongly, since {6,, f}* = 0 for any dynamical
variable f.

In the present case, all ¢} of (2.28) are second class.
Indeed, owing to (2.26), we find

AO

(2.29)
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Hence, due to the 2n(N — M) second-class constraints, the
number of independent variables reduces to 2nM, which is
equal to the number of the canonical variables of L,,.

A simple example of this case is

N (29);

L—Zg,,q q

with

(5); (s);

2(—1)g,, g ¢ +F,

y=0

(2.30)

N ) (25— 1)y
F= 3% g;(¢d ¢

s=1

.(2s—2),

(s —1D); ()

l)s—] q q),

where g;; are constants. There appear 27N constraints and L
is equivalent to
(s); (s);

Lo=2 (-Dg; 9 q. (2.31)

(ii) The case of N>2M. Though the constraints are
presented by (2.28), the series of the constraints are ex-
tended to u=N—1, due to N>2M. Among them,
{6%¢',....6" 2~} are first class and
{g¥ MgV -2M+1 | 4V~ '} are second class. There exist
n(N — 2M) trivial degrees of freedom that are associated
with the n(N — 2M) first-class constraints. Combining the
2nM second-class constraints with them, we have 2nM inde-
pendent physical variables in this system, which again coin-
cide with the number of canonical variables of L,,.

In both cases, since the Hamilton equations of motion
with the primary constraints reduce to the Euler~Lagrange
equations (2.24), we obtain the Hamiltonian formalism
equivalent to the Lagrangian one, by resorting to the Dirac
bracket. Consequently, if we employ a Lagrangian whose
order of time derivative is reduced by adding a total time
derivative term to L, redundant constraints can be removed
from the system.

If4° of (2.26) is singular, the stationarity conditions of
o yleld more constraints that are out of the Ostrogradski
transformation. So, a further investigation is needed for such
a system.

lIl. EXAMPLES IN GRAVITATIONAL INTERACTIONS

In the approximation of second order of 1/¢, the La-
grangian of two-point particles interacting gravitationally is
given by’

22 —LPN+}’[422 Z

a b#xa Fgp

m,m,

X{(Va —Vb)2 - (nab'va —'Vb)z}

m,m,m
s s m,n|. G
a bs#ac#a ab
with
m,my,
Loy =— va +—2m (v2) 4 — ZZ
a b#a Vab
402 2 ,,;a s
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X{Gvf, _— 7(Va‘vb) - (nab .va)(nab.vb)}

G2 mambmc s (3‘2)
26 T 570 T Taplac
where m, and v, are the rest mass and the velocity of ath
particle (a = 1,2), respectively, r,, = |z, — z,| (z, being
the coordinate of ath particle),n,, = (z, — z,)/r,,,and yis
a gauge parameter.

In order to illustrate the essence of our procedure, we
use here a system of center of inertia for simplicity’s sake.

The L %, is rewritten as

~ 1 ., 1 uM—=3u) ..., GuM GuM?
Ly =—pui+ 82— 28 -
Y VA )"+ r 2627
G,u (r)?
22 {(3M+,u)(r) +u 2 ]
2 G#M[-z_ (f'ﬂiﬁM} 33
+ 2 r r r r ’ (3:3)

where M =m, +m,, p=mm,/(m, +m,), v =12, —2,,
and r = (r) "2
If we add a total time derivative term

d2
Lua = —25GuM 2 3.4
dd ) (ad di2 (3.4)
to (3.3), we have the acceleration-dependent Lagrangian
1 1 (M —3u) GuM G*uM?
L* ui?  — 0 O 32y2 _ G
PN = 2 3 =IY; ()" + r YR
Gu [ (r f)2]
M
R M+ )i + p >
oy G,uM ( GM )
2 r+ 3 T]. (3.5)

The y-dependent term in (3.5) would reduce to the order of
1/¢*, if we use the equation of motion that is derived from
Lpy. However, it is evident that one cannot adopt the equa-
tions of motion in the Lagrangian. We shall show that the
Lagrangian L %, is physically equivalent to the Ly irre-
spective of the value of y.

The canonical momenta conjugate tor,, =F and r are,

respectively (ro, =r, p¥ =p),
p" = —y(G,uM/2c2r)r, (3.6)
wM—3u) ..
r+— )
=pu Y, (¥)
+%{(3M+u)f+i‘—(r-f)r}
c’r r
GuM [ (r-i')r]
— . 3.7
ty 2c%r f r G-D
The Hamiltonian is
H#%y = (") + (pF) — (3.8)

Whenris replaced by ry, in (3.7), Egs. (3.6) and (3.7)
become the second-class constraints:

&°=p" 4 p(GuM /2¢*r)r =0 (3.9
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_p(M—3p)

22M (CTR LI

é'=p—pry,

—@[(3M+,ul)r(l) + —‘lt— (r'r(l) )r}
c’r s

GuM (rry)r _

— E—[l‘(l) ——;'2_] =0. (310)
The Poisson brackets

ri,' =5') ri’rj :{,‘) }=01

{rp} =6 {rir} =Ap,.p; 3.11)

{ray iy =8, {ra,rin 3 ="p"r =0,
should be replaced with the Dirac bracket defined by, up to
1/¢%,

{fre}* ={rg} —{£eH(C "¢} g}
+ {81 C {8},

in which {¢{,¢;}(C ~')* = 8f. Hence, we have (up to 1/c?)
{Fp}* =68 — p(GM /2¢*r) (8! — Pri/P) ,

{rr}*={p,p;}*=0. (3.12)
If we introduce r and p through

r=r+y(GM/23)(x/r), p=bp, (3.13)
they satisfy the ordinary canonical form

{£p}r=6, {£r}*={p.pl}*=0. (3.14)

Since we work with the Dirac brackets, the constraints
¢° = 0and ¢' = 0 hold strongly. The Hamiltonian is, up to
the order of 1/c2, reduced to

1 M-—-3u , >, GuM
H* =—p*— 32
=2 " en B
(L‘D)2]
— M+ 2+ﬁ__.._
2c2,u_L{( HIp r
G*uM? 1
* 25%2 +0(?)’ (19

which has the same form as the one obtained from the La-
grangian (3.5) withy = 0.

As mentioned in Sec. II, the total time derivative term
does not affect the physical effect. We shall investigate, in the
Hamilton formalism, the relation between the two systems
described by the Lagrangian L %, (3.5) and the L %, (3.3),
respectively [cf. case (i) in Sec. II].

The Lagrangian L%, does not contain acceleration
terms. The canonical momenta and the Hamiltonian are giv-
en by

= ur
P=Aa 20°M

+ —Gzﬁ{(SM+u)i +——”(:;')r]
cr

G,uM{. _ (r-l")r]
+Y c*r r 2’
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(3.16)

1, M-3u

GuM
L WE
2u 8cu'M

(p*)’ —

o2 2 ar?
{(3M+,u)p2+,u(rrg) }+G“M

2ur 2¢*7
)2 2,02
—y GM{z_(rp) }+ G;iM ‘
2cur r 2¢*7

(3.17)
We apply a canonical transformation defined by

a a a
=—=S(gpt), p=—S(gpt), H=H——S(q,p,t
q o (gpt), p % (g.p:1) H—— (¢,p,1)

to (3.17), where S(z,p,t) is its generating function. If we
take

S=(rp) + y(GM /2 r) (xep) (3.18)
we get
GM{ (r-p)r}
r=r+ r, p=p+ ~ L (3.19
r Yoz PRy P > (3.19)
and
= 1 M—3u GuM
% —_1 52 2y2
 py 2“[’ 8 2#3M(- ) .
s (rp)’
- 3M + p)p? :
2&%[( +u)p +pu = ]
GuM? (1)
+0|—], (3.20)
* 2027 ¢t

which has the same form as H %, of (3.15).

Thus it has been shown that the Hamiltonian with yp7#0
is obtained from the Hamiltonian with y == 0 by a canonical
transformation and then both Hamiltonians are physically
equivalent to each other up to order 1/¢. Furthermore, L, 4
given by (3.4) has no physical effect as mentioned in Sec. I1.
Consequently, L %, given by (3.5) is physically equivalent
with Ly given by (3.2). It should be stressed that the Dirac
bracket plays a vital role in proving the equivalence. There
exist the relations r = Lp=p that are seen from (3.6),
(3.7), (3.13), (3.16), and (3.19) by expressing p and p in
terms of r and r. This guarantees that the Hamilton equa-
tions described by (3.15) and (3.20) give rise to the same
Euler-Lagrange equations up to the order 1/¢*.

Next, we consider the post-post-Newtonian approxi-
mated Lagrangian in a physically acceptable coordinate sys-
tem [in which (g,, —7,,) — O(1/r) under approxima-

r— + oo

tion processes].”® As mentioned in the Introduction, there
exists an acceleration-dependent Lagrangian that cannot be
transformed to an acceleration-independent one by adding
total time derivative terms. In the case of the two-body sys-
tem, the Lagrangian is given by®

Lppy =Lo+ L, ,
with

(3.21)
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1
Ly= %(m.v% +mavz) + g%{m.(v% 2+ mo(v) T+ S lm (V) 4 my(v)°) +
C

Gmm,

_ G’mmy(mi+my) | GPmym, (

mi + m3 + 5mym,) + —G—’;‘zﬂﬁ(vf +v3) — 7(vyvy) — () (nevy) }
r

207 4ctr
G>m m? s s GPmim, 2 2 2
————{18v] + 13v] — 34(v;*v;) + 15(n+v,) T+ —————{13v] + 18v] — 34(v;v;) + 15(n+v)) }
8c*r? 8c*r
G ia mj(:tz x mz){vl +V§ - 2(V1'V2)} -+ Gm m2 {7[(V )+ (Vz) ]
¢
—14(¥,V,) (P 4+ ¥2) — 2(0v,) (0o9,) (V2 4 V3) + 11v] V3 + 2(vv,)® — 5[ (¥} (m,)” + V3 (V)]
4 12(v,¥,) (v, (0%,) + 3(nev)*(ney,) %}, (3.22)
L,= 42f(m(! +eGmr;n2), (3.23)
a=1 :
where l1 d 1 G
=W, =—{L ——5Sm VZ] - m,mzl [(v —v,)
2 v, 0T ; 5V 1 2
f, = €,n(G(mm,/r) —m,v%) (3.24)
. d] 4
. . . .. dz,
in which v,=2,, o,=%, (a=12), n=n,,
€, = — ¢, = 1, and @’ means “not a.” (nev,)
The canonical momenta conjugate to z,,, = v, and z, —2Gm, ) nr. (3.25¢)
are In deriving (3.25b) with (3.25c), use has been made of the
equation of motion. According to the procedure given in Sec.
D = (G /4cym,f, | (3.252) I, we have the following second-class constraints with 12
components,
9L, 0L, 4oL, o, =pi" — (G/4c)m, £, =0, (3.26a)
b=, " ov,  di a, bo=p, — MaZcy, — (1/)W,(2,,2015,) =0. (3.26b)
The i, j indices labeling the degrees of freedom in Sec. II are
here written (ai), (bj), a,b =1,2 (particle’s number),
= 1/cH)W, 3.25b L . .
MaZia + (1767 ( ) i,j = 1,2,3 (spatial indices). To obtain the Dirac brackets,
let us take the 12X 12 matrix that is relevant to our post-
with post-Newtonian approximation

G N i afbj) 2
, n G, Ze o, 28 m,6,,8, + O(1/cP)
(?’5‘“ i E"ﬁ“' ¢"f§)= 4c4( v, * o - (3.27)
¢ai’ bjds ¢ai’¢bj ’“maaab‘sij+0(1/cz)’ 0(1/02)
whose inverse is
o1/e) - mLa,,,,a,., +0(1/¢Y)
-1 _ a
{oe}™ = 8,8, +0(1/c) _£<_1_ . __1_%> (3.28)
¢ 4c* \m, v m, W,
Using (3.28), we get
C , G 1 I 1 afd! (1)
{2l = e === > o
G} =5 5 b} (md ) ) +
G (1 I 1 o"ﬁ,) (1)
=2 (—=2_ " T¥)io0(= 3.29
4c* (m,, o, m, ' + fiad (3-29)
G i j i oy d 1 '
= b ;;f,,{v,,nur vjnt + 0(—3), (3.29')
C (4

1128
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{Z:, ,ij}* = 601,5,/ z {Z;, Zk}

1 1
— 6cd5kl{¢gl)pbj} +0 (F)

ed ki m,.
G 1
= 5,5, + fa, ( ) (3.30)
c®
G G va‘
=6ab5ij + £,€, Z;‘l::lz {7 (6‘,} —2n,-nj) ——rn— (5,] —n,-nj)} + O( I/Cﬁ), (3.30)
{Paispy }* = O(1/¢°). (3.31)
Under the framework of Dirac brackets, we have the Hamiltonian
G2 26m2m?:
H = Hy(p,2,) +@[———'3—‘—2— — (mp3 +mp)) i, (3.32)
in which!?
2 2 2 2 2 2
j 4] ):53 Gmm 1 '3 P2
Hy(p,:2,) = + ——2 - im | =] +m| =
o'P 2m, 2m, r 82 | '\m? \m?
+G_2 mlm2(m1+m2) +£mlm2 { 12( 2 + 2)+28 (pl p2)+4 (npl)(np2)
2¢? r? 82 r mi  m; mm, mym,
1 Y Y G3 mymy(m; + m3 + Smym,)
+—im =] +m|—=
16¢ m; m:) | 4t r
2 m m2 2 Zm 2
G (10—+ 19—) I 2(19 +102
4c¢* r m} 4c* r m; m}
G’ mlmz(ml + m;) {27 (py Pz) (n'Px)(n’Pz) ]
T4t r? m m2 mym,
2 \2 2.2 12 2o 12 n 12n2
+£4Q1m_2{5 [(P_:) +(P_2) ] C g PR (eep)? | PR+ ()R]
8t r m? m3 m3m3 mim3 m3m3
. ®] L o 2 ] 2
1 pz)(r:plz)(npz) _3 (npl)z(nzpz) } (3.33)
mym; mym;
We can directly confirm that the canonical equation of mo- Iwe get
tion in terms of Dirac brackets coincides with the reduced
equation of motion, which is obtained from the Euler-La- H=H,p,.z,), (3.37)

grange equation derived from (3.22) with (3.23) by the iter-
ation method using the equations of motion in the lowest
order. A relation between the Lagrangian system with accel-
eration terms and the Lagrangian system without accelera-
tion terms is obtained by introducing new coordinate vari-
ables as done in (3.13).

Instead of (3.29), (3.30), and (3.31), we can get the
ordinary canonical forms

{_Zj; Zj}* = ai % ‘}* = 0’
. ety (3.34)
{—Z«nEbj} = 8,0y,
up to the approximation of order 1/c*, in which
2, =12, — (G/4c)f,, p, =Dp.,. (3.35)

If we take account of the relationship between
r={(@ —2,)}"?and r={(z, — 2,)?}'3,

=r[1 _G (ZGm L R —mzvi)} + 0(%),
c

4ctr r
(3.36)
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where the second term on the right-hand side of (3.32) is
absorbed in — Gm,m,/rof Hy(p,.z,).

A similar procedure has been applied by Jaén et al.” to
Wheeler-Feynman electrodynamics for two charged point
particles up toorder 1/¢*. Jaén e al. stand on the assumption

N, N,
that the Hessian matrix d 2L /. B(q)l_ a(q) ; isregular, while we

start with the singular Hessian matrix.

IV. GAUGE SYMMETRY AND ITS GENERATOR

For the Lagrangian with higher derivatives, if all the
constraints are first class, the system is gauge invariant. In
this case we can construct the generator of the gauge trans-
formation by following the procedure similar to that of the
ordinary Lagrangian'! and prove the consistency between
the gauge transformations in VPS and in PS, by using the
equations of motion. In this section we will show them.
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A. The construction of the gauge generator

Here all constraints are assumed to be first class. Using a
Dirac algorithm, we define successively the secondary con-
straints from the primary ones ¢%;

¢k ={¢t".Ho}. (4.1)

Though H should be used in this algorithm, H, can be
substituted instead of H;, owing to the assumption that all
constraints are first class."'® This algorithm is continued until
#7 satisfies'

o' ={¢7.Ho} =y #5  (k<m). (4.2)

The generator G of the gauge transformation is ex-
pressed as

G=eZ ()¢l (k=0~m), (4.3)
where £ are determined by the condition
96 | {6,H}=0 mod(4), (4.4)

at

which is nothing but the conservation law of G. From (4.3)
and (4.4) it follows that

Jes
at

By using (4.5), €% (k <m) is successively determined and
expressed in terms of £2, (¢) which is an arbitrary function of
t.

4+ {ef HY +€2_, + 65 ¢ =0. (4.5)

If G satisfies the following conditions for all a;
{G.¢.}=0mod (¢°), (4.6)

G is the generator of the gauge transformation leaving the
action invariant

D g _ 3G
89(0) =140, .G} = Ry (4.72)
54 =4 890, - (4.7b)
de*
Proof:
SL = z 6qm

=( aiL P:(O)) 840, + ( 2 P 84, ) (4.8)
a‘](0)

Owing to (4.6), (4.4) is equivalent to

a6

ot
with H of (2.10) or (2.11). With the help of (2.16) [except
for the equation of motion (2.16,4)], (4.9) in VPS turns out
to be

3G cen 3G ( _y, OL )]
=+ i +— =O)
2 a (s) P aq'(s)

5= 8q‘(5)
(4.10)

=L 4+ {G,H}=0mod(4"), 4.9)

where p'~ " = 0. Using (4.10) we obtain’®
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_{. oL . 0)_9G d S e
5L—( P ) © E sZOPi 5Q(s))

990, ap;

d s
dt( G+ Z Pi )5"“’)

Thus the assertion has been proved.

Even when second-class constraints appear, if the series
of first-class constraints (4.1) and (4.2) derived from pri-
mary constraints are completely separated from the series of
second-class ones, this formulation on the gauge symmetry
is valid for such a system.

(4.11)

B. The consistency of gauge transformations in VPS
and PS

We define the gauge transformation in PS as
Sqis) = {qis) ’G}y

5> =16},

The gauge transformation (4.7) in VPS is equivalent to

the one of (4.12) under the modulo of the equations of mo-
tion;

(4.12)

i d’ . T
5q(s) =d_;5q(0) =5q(s)’

(4.13)
p(" (o) r-Gim) =bp!®.
We emphasize that these consistency conditions are much
more serious than the ordinary case. For the ordinary La-
grangian, the relation 8¢° = 8¢ does not hold without using
equations of motion if G contains terms higher than quadrat-
icin p;, as shown in Ref. 11.

Proof: Equation (4.9) can be written as
3G N-'( 3G 8H 3G aH)_E,,¢0
ot “So\dq,, ¥ ap“’ g,
Differentiating (4.14) with respect to p{” (r<N —2) we
obtain

ZG N-—-1

Jd +'S (
31‘3[7](’) s=0

(4.14)

4G H
ap(r) aq(g) ap(S)

a°G JoH

ap(s) a (r) aqi_q) )
aG 3°H aG 62H

= o(&qm ap;"dp apf“) ap;"” 3q, )

¢° (4.15)

a (r)

In the above, use has been made of the fact that ¢2 is inde-
pendent of momenta other than p{¥ ~ . From the expres-
sion (2.10) for H it follows that

d’H J
e g 0o O (orreN =D,
d*H J . _
Y, vy =606, 44
;" 94 )
The substitution of these into (4.15) leads us to
9°G ”i'( 3’6 9H 3%G 8H>
;" o apl(r) g 5p(s) ap;” P g,
-2, (4.16)
aP/’ apj
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With the aid of (2.16a)—-(2.16e), (4.16) turns out to be
2 N-—1 2
a‘G " z 3G
8tc?p}” s=0 3p(” aq.,
N-1 azG

)y

aL
+ Y oot~ T+ )
<1 dp” apf® ( 3qs)

4G dL aG
P I gy  IpHD
From the Ostrogradski transformation and (4.17) it follows
that

i
9dis+ 1)

=0 mod(¢°). (4.17)

azG N—-1 aZG N—1 aZG -
can + 3 P
tdp" pX I g’ Ghrnt 3, ap” o "
2
6°G _ _dL 96 0mod(f%). (4.18)

dp® dp{” g,
This is transformed as

de ;
z{qm yG}E{Q(s.;. 1) ’G}

ap(r+l)

%G ( aL — O
ap(m a (s) aq(jo) J
It should be noticed that in the derivation of (4.19) we have

not used the dynamical equation (2.16d), but only kinemati-

cal relations.
Since the primary constraints ¢ identically vanish in

VPS, by using the equations of motion (4.19) gives the first
relation of (4.13) in VPS.

Next to prove the second relation of (4.13) we differen-
tiate (4.10) with respect to g{,.,, (<N —2) and use
(4.18) or (4.19). Then we obtain

d sz, ) azL ( r l) r
2 5q . : : Spir+ D Spn
(dt v qny 99!, 1) dt b i
Nt 3L = JL
ST (i)
5= 9g{, 41y 95 3910y

) mod(¢°). (4.19)

N—1 32G ap(s) 932G )
X : =0,
( Zo c?p(o’ 8p(” 3q(,+ 1) aP:(O)aq(Jr+ 1)

(4.20)
with p{" =0, ¢}y, =§iy_,,. Using (4.20) we are led to
op}” =5( ?L —P.‘-””)

aq(.H- 1)
N 2
= 2 —_— g f 54/, "iapth”
’=°aq(1r)aq(S+l) dt
N—1 aZL . - .
=&p¥ + ————(64(, — 64{,)
r=20 a (s) a (,)
d’L

. d - .
— 9L (spi L g )
aq,m c?q{N,( IS ar qdin—-1)

(5p(s+l) 5p(5+1)) +< [C)) _ai_)
9q{s)
N—1 2 aps” 2
x( s 9°G P . _9G )
F=0 3p}0) 8pi” 3q'(s+n aP}O) aq'(s+l)
4.21)
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By taking into account the equation of motion and
6qis) =5qis) s (421) reduces to
% d
6 ;s)za ‘(s) _= 6 l(,;.;.1)
P P dt( 4

—&pst V). (4.22)

Starting from s = N — 1 in (4.22), we obtain successively
5p") sp(s)

Thus it is verified that for the transformation 8¢, and 5p¢,
the action which is invariant for 8¢¢,, and 6p{*, is also invar-
iant under the modulo of the equations of motion (2.16).
Then the Hamilton equations of (2.16) are invariant under
the transformation given by (4.12).

V. EXAMPLES OF GAUGE TRANSFORMATIONS

To illustrate the results of Sec. IV, we present a few
examples. (1) A model with the Lagrangian

L=4'¢+4'(§ - q’)+q(q - —g'¢. (5.1
The momenta conjugate to q are

=9, p¥=¢", p¥=0,

(4),
=7 -pP=¢-¢-q,
P = q -pP PV = -4, (5.2)
(0) q3 p(l) (0) q p(l)’

p§°’= —q' —p5>.
The primary constraint is only

¢° =pi». (5.3)

The Hamiltonian is given by
Ho=pi”pi” + 140 + P90, +P5°00) + 1790,

+037q4, + P3040 + 9 (9, — 9%))
+ 9t (@0 — @4y) + 910, Tloy (5.4)
and
H, = H, + vp{?. (5.5)

The stationarity condition of ¢° yields the following second-
ary constraints:

¢1 = {¢09H0} = —Pgl) - qéZ) ’

¢ = {¢laHo} =pi” + qén —ps7,

= —qio, +p5", = —pi.
All constraints in (5.3) and (5.6) are first class. Hence the

system is gauge invariant and we can construct the generator
of the gauge transformation:

(5.6)

G = —epi” + é(qpo, —P5V) + E(PSV + gy, —p$2)

(4)
+ €@ + gl)) + €p?.

5.7

This G produces the following transformations:
3ql, ={g!y,G} =0, 3g, = — ¢, 3ql, ="¢
5P =P, = — "€, 5w =5 =0. (58)
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These 8¢, satisfy 8g},, = (d*/dt*)bq\s, = 8¢',,, and 5p"
are consistent with the definition of the momenta in (5.2),
that is 8p¢” = 8p¢*). Under this gauge transformation, we
observe the invariance of the action

8L = —%(é‘"é+q‘é+q‘é). (5.9)

(2) Yang-Mills theory with higher derivatives

L= —F, F* —«xD,F, DPF", (5.10)
where

F,, =d,4,—30,4, + [4,.4,],

D X=3d,X+[4,X],

and

A, =T,Az.
The generator for this system was already given by Galvao et
al.'® We take this model in order to compare with our formu-

lation.

By denoting momenta conjugate to 4 # and A*=4 0

by p, =p.” and p\", respectively, we obtain

P(()” =0, P:U) = 4D, F;,
Po = 4kD 'DyFy,, (5.11)
pi = 4x(D’D,Fy, + D'DyF;;) — Dp(" + Fy,,

and
Hy= (1/8) (p{")? + p{" (DAY, + [4%4 ) ]
+ [FonA 0]) +KD0F,.I.D°F"J'+ ZKDiFojDiFOj

+ kD, F D'F* + JF, F* + p, A%, . (5.12)
The constraints are as follows:
¢0 =P(()”,
' _p D lgl)’
é Do p (5.13)

¢2 = - Dipi + Di[A 09P§”] + [FOi’pi]r

¢ =[4°4°],
which are first class. The generator of the gauge transforma-
tion turns out to be

G=Jd3x(p#D“e + pd,D*e), (5.14)

after a partial integration with respect to x’. This G satisfies
the conditions (4.4) and (4.6). The transformations in-
duced by G are

84# =D"e, S4%, =3,D"e,
8p. = — [ep.] = [6p."],
=~ [ea],

which also satisfy the consistency condition without using

equations of motion. Under the transformation (5.15) we
obtain

oL =0.

(5.15)

(5.16)

1132 J. Math. Phys., Vol. 30, No. 5, May 1989

APPENDIX: ‘g” INDEPENDENCE OF 3L/3"¢"

We shall show that JL /BUZWI we_ is independent of
. =

(N)a
q .
From (2.8) and (2.9), we obtain the identity
JdL
(N—1) _ _
D = s (a=1~n—r). (Al)
dq |-,
Differentiating (A1) with respect to ([;)a, we get
b
A ¥ +A,, =0. (A2)
(Na
q
On the other hand, there are C |, such that
A,=CsA, (a=n—r+1,.,n), (A3)
owing to the assumption (2.8),
det(4,,)+#0 (A4)
and
rank(A4;) =n —r. (AS)
Using (A2) and (A3), we obtain
d JdL
d(?ﬁ 3(?(1 @ =r
= Aaa af + AaB
(N)p
q
b
=Cal A, A +4,1=0 (A6)
(Mg
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The expansion of the Casimir energy for a scalar field with mass m, in a space where one
dimension has been compactified into a circle of length g, leads to a double-infinite series that
can be regularized by analytic continuation in the space dimension. The dimensionally
regularized sum is then expressed as a power series in am by means of zeta-function
expansions. The two possibilities of odd and even space dimensions are distinguished. In the
odd space dimension we give a power expansion for small am, in addition to the asymptotic
behavior. For the even space dimension, an expansion valid for any value of am is obtained.
The contribution of higher-order terms is studied and, for the three-dimensional space, results
for different values of the compactification length are shown.

I. INTRODUCTION

In 1948 Casimir showed that neutral, perfectly conduct-
ing, parallel plates in an electromagnetic field attract each
other. The attractive force can be thought of as caused by the
change in the zero-point energy of the field when the plates
are brought into position. In fact, for any quantum field, the
zero-point modes are affected by the presence of any sort of
boundaries or external constraints, so that the zero-point
energy is modified. The evaluation of these vacuum energies
is sometimes ambiguous and the outcome is usually a diver-
gent sum. In canonical quantization, this can be regarded as
a consequence of the fact that this scheme does not fix the
ordering of noncommuting operators, making additional
prescriptions necessary for removing ambiguities.

One of the most commonly used procedures for obtain-
ing the vacuum energy is direct evaluation of infinite sums
over eigenvalues of zero-point field modes. These sums,
which happen to be formally divergent, may be regularized
by a variety of techniques, e.g., momentum cutoff’ or dimen-
sional regularization.?

Here we will consider a massive noninteracting scalar
field in a region bounded by two (d — 1)-dimensional hy-
perplanes contained in a d-dimensional space. By subjecting
the field to periodic boundary conditions one obtains the
theory that corresponds to a space where one dimension has
been made compact.

Basic quantum field theory (QFT) tells us that for a
scalar field with mass m, the Hamiltonian takes the form

1
H=—Yw,(dla, +a,a
2; k( k“k k k)

Te(n+3)
=—N w {n, +—), 1.1)
2 ; k k ) (
where w? = k? 4+ m? are the eigenvalues of the Klein-Gor-
don operator; a} and a, satisfy
[ak,aZ:] =6kk'! (1.2)
and n, =a,a}, is the number operator whose eigenvalues are
non-negative integers.
Since the vacuum state |0) is defined by a,|0) =0,

when computing the vacuum expectation value E,
= (0|H |0) one obtains

[aw.a, ] =[al.al. ] =0;
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Eo=—3 o, (1.3)
24

which is a divergent quantity. The reason why this is so is

that we have introduced no additional prescription, i.e., nor-

mal ordering for the Fock space operators in the Hamilto-

nian. Had we defined H to be normal ordered, we would

have obtained

:H:=Zwka}:ak (1.4)
3
and thus
E{=(0|:H:(0) =0. (1.5)

Nevertheless, introducing normal ordering amounts to mak-
ing an additional postulate in order to render the vacuum
state energy finite. The arbitrariness of this prescription
points out the existence of an ambiguity in the zero-point
energy.

On the other hand, it is known that when a physical field
is forced to satisfy certain boundary conditions, the presence
of the boundaries induces a change in the energy spectrum
that modifies the zero-point energy. Thus in order to remove
the above-mentioned ambiguity, it is reasonable to define the
physical vacuum energy as a difference in zero-point energy.
Let JT" be an arbitrary boundary for the field in question,
E,[dI'] the zero-point energy in the presence of that bound-
ary, and E,[0] the zero-point energy without boundary.
Then, the Casimir energy is formally defined as

E.[dT'] = E,[dT'] — E,[0]. (1.6)

The definition (1.6) gives E.[0] =0, so that the intuitive
idea of a noninteracting vacuum is preserved.

H. EVALUATION OF THE CASIMIR ENERGY FOR A
MASSIVE NONINTERACTING BOSONIC FIELD

Given a scalar field ¢ in R? with mass m, the constraint
of having two neutral parallel plates, orthogonal to some
certain direction of the space—say the x, axis—can be im-
plemented by the periodic boundary condition

$(x, =0) =¢(x, =a), (2.1)
which means compactification in a circle of length a, giving
rise to the space ' X R~ !,
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By solving the Klein—-Gordon equation with condition
(2.1), the field modes are found to be

Kprxq Ot

B(X X, t) ~ 27X A X AT 2.2)
with integer », and
Oppe, =+ 2nm/a)? + K5 + m?, (2.3)

where x, corresponds to the transverse coordinates.

Now, assuming that the plates have sides of length L,
with L > q, the zero-point energy of the field inside the result-
ing cavity (whose volume is L ¢ ~ 'a) will be given according
to (1.3) by

E(d,am) (i)d—lfdd"k —l—zw
S Ty T &k
(&) e
n=1
X\/(Zmr) FKE 4+ m,
a

The mode for which #» = 0 has not been included because,
since it carries zero longitudinal momentum, it is irrelevant.
Asitstands (2.4) is infinite. It is quite clear that what makes
this sum divergent is the contribution of high-frequency
modes. Nevertheless, this contribution ought to be indepen-
dent of a because these modes are not affected by the pres-
ence of the plates; thus they should cancel in calculations of
forces or in comparisons of the energy density in the pres-
ence and absence of plates.

The quantity (2.4) will be regularized by analytic con-
tinuation in d. Making use of

(2.4)

27272
dPk,=——|k,||P~'d]|k (2.5)
r= Ty Merll® e
and
f dtee='(14+1)~°"°=B(ab), (2.6)
0
where B is Euler’s beta function, one is led to
d—1 _ d
E(d,a,m)_—_(_L__) pa-vnL(=d/2) (_2_'[)
27 '(—1/2) \ a
am ds2
n . 2.7
x5, (+(52))

After evaluating the n summation (see Appendix A), (2.7)
takes the form

E(d,am)
1 L4 ! —<d+n/2[ f ( i) (i__’”)d
= __2_7.77- Fdu 5 >

() (-

2 2
K441y, (amn) ”

+ ,.Z’n (amn/2)(d +1)/2

Terms independent of ¢ have no physical significance and
may differ from one regularization scheme to another: Look-
ing at (2,8) we notice at once that the first term in the curly

(2.8)
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braces is one of them, so it is to be dropped. The first term in
the square brackets can be thought of as an energy density
which would occur even in the absence of plates: For consis-
tency with (1.6) we have to substract it as well. Then, what
we obtain is the physically relevant energy, say e:

e(dam) = — 2Ld.l g 1)/2(_0_’2)d+1
a’ 2

% K1y, (amn)
n=1 (amn/2)(d + 1)/2

L1

ra

=2 — @+ D28(dam), (2.9)
where the definition of the sum S(d,qa,m) has been chosen
for convenience. For small am, it is possible to use the expan-

sion

(x/2)'K,(x) =L (v) + O(x*), (v>0), x<1 (2.10)
to obtain
e(d,a,m)
~ — (L4 Yayr— @ D2 [T (d + 1/2)Ed + 1)
+0((am)?)], am<«l, (2.11)

where § is the Riemann zeta function. Equation (2.11) can
be viewed as the result for m = 0 plus small-m corrections.
From here on it is clear that in the massless case, the result is
finite for all positive d and always negative. Thus this energy
gives rise to a force which tends to contract the system. In
general, lower modes can be considered to be responsible for
the dependence of the Casimir energy on a. On the other
hand, if we take ma> 1, then the leading term in the # sum
will be the one with n = 1. When we are in these conditions,
the asymptotic behavior

K, (x) =y7/2xe~ % x>1 (2.12)
gives
e(d,am) =~ (L /a*) (am/8m)* %~ ", am>1.
(2.13)

In this case, the energy coming from the lower modes is
dominated by m and does not depend on a so strongly, as in
the previous case (small-am limit).

. ZETA-FUNCTION REGULARIZATION OF THE
CASIMIR ENERGY

The method used here, which rests upon the properties
of the Riemann zeta function, is actually different from the
procedure of direct zeta-function regularization. By this we
mean that now one starts from a sum mode that has already
been regularized (in our case, dimensionally). Nevertheless,
in analogy with the observation made by Actor® concerning
thermodynamic potentials, for nonzero mass we have a rath-
er complicated function whose power series in @, or rather in
am, would be, as a general rule, difficult to obtain.

As a matter of fact, our problem involves a Bessel func-
tion series of the same type as the one that appears when
evaluating the partition function for a relativistic Bose gas
with nonzero mass® and in the absence of any chemical po-
tential.
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From now on, we will focus on the sum S(d,a,m) de-
fined in (2.9), which can also be expressed as

ke 1 amn\@+ D2
S(d,a)m) = z d_‘f‘l(T) K(d+ 13/2 (amn),

n=1nN
(3.1)
and we shall consider two possibilities.

A. Odd space dimension

Now we haved=2p— 1, p=1,2,3,...
posed with

, S0 that we are

S(2p — l,am) = i -n-!z;(a’;m) K (amn). (3.2)
n=1

It can be found that there exists an ascending power
series for K, (z) for the non-negative integer p, namely,

1P5) (p— k—l)'( zz)"
K, W=rk—-)[(_Z
(2) @ =22 P 4

k=0

Ay+* 1
+(_1)p§o(7) K!(p+ k)!

( m( )+C(p,k))
where

CpR)=y(k+1)+¢(k+p+1). (3.4)
The occurrence of the logarithm in (3.3) is quite important
as it shows that K, (z) necessarily has a branch pointatz =0
and a cut to infinity which is placed along the negative z axis.

By putting (3.3) into (3.1) it turns out that

(3.3)

S(2p — l,a,m) =5,+ 9, (3.5)
with
& 1S (p—k—1)! k(amn)z"'
S, = — — (-1 — 3.6
: ,,;,nm;,z k! (=5 (.0
and
J
L2 p—2
€(2p— l,am)= — > T~ ’S(2p — l,a,m)
al’
LZ" 2 { c(p—k—1)
= -2 | R AL
a** z (=D 2k!
+ (—1)

For large am we obtain, from (2.13),
€2p — l,am)=(L¥*~2%/a*~ ") (am/8m)? ~ %e~ ",
(3.13)
B. Even space dimension

We will now assume that d = 2p,
essary to find a power expansion for

el 1 p+ 172
S(2p,am) = Y W(?) K, .,(amn).
n=1
(3.14)

p=123,..;itis nec-
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© 2k +2
S=(-1ry ZPZ(amn) T

n=1 N k!(P+k)!
x( _ 1n(‘”;'”) + C(p,k)).

Asfor S, the convergence of the series for k < p makes it
possible to interchange the summatories, obtaining

& 1 fam\* (p—k— 1)
5= 57 (F)

k=0

(3.7)

— )*(2p — 2k).
(3.8)

Infact, S, is a bit more tricky: By separating In(amn/2)
into In n and In(am/2), it can also be written as

S2 = ( - l)p(am/Z)ZP( - SZI ad 1n(am/2)S22 + S23),
(3.9)
where
o 2k
Sy = InnS n* am/2)" ,
o ngl z kl(p+ k)
2%
S, = pre _(am/2)” (3.10)
2 ngl k;o kl(p+ k)
) © 2k
§.= w (am/2) Clok
B n§=:lk=0n kl(p+k)! (p:f)

The results for the double sums (3.10) can be obtained from
Appendix B and give rise to

2p
()

MRS e
2p! = 22m) 2Kk + p)!
2k ,”3/2
x (2k+1)(3ﬂ) T
£ 4(p— N

+2p'1 (2) C(p’o)]
By putting the results (3. 10) and (3.11) together, we can see
that the regularized, physically relevant vacuum energy be-
comes

(3.11)

7732

2k 2p—1
(2p — 2k) (ﬂ) F(—p T (“’”)
$p 2 41!

14 am 0 (_l)k+l(2k)| ( )p+2k]
1 C(p,0 — 1) 2k + IY— .
2p! (n(41r) @ ))(2) + )k=12(277)2kk!(k+p)!§( + D5

(3.12)

I
For the modified Bessel function there is an asymptotic ex-
pansion for the large argument and real parameter, i.e.,

K()=_[Te-s 5 Lvtk+h 1 1
2z o T'(v—k+1) k! (22)*
(3.15)

Actually, (2.13) comes from (3.15). Notice that when v is
half an odd integer, owing to the singularities of the gamma
function, the series does in fact turn into a polynomial. Tak-
ing this into account, one arrives at
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d 1

T —amn
S(ZPsa,m) = n;l 2P+ 1/2n2p+ 1 7 €
I (p+ k)! —k
—E L7 (amn)? kK (3.16)

The finiteness of the second sum in (3.16) makes it possible
to naively interchange the summatories and obtain

(p+ k)!

\/; P
S(2p,a,m) =
P P2 kZo 2K 1(p — k)
X(am)?~*Li,, ., (e™*™"),  (3.17)
where Li, (x) is the polylogarithm function
. s 1,
LlN(x) ZnEIFx. (318)

Zeta regularization of (3.18) (see Appendix B) allows us to
write an am expansion for the physically relevant vacuum
energy:
€(2p,a,m)

2p—1

= 2=

T (r+ I/Z)S(zp,a,m)
a*

2p—1

20%°

P L (p+ k)
o 2% (p — K)!
X{ i (—1)n§(p+k+1—n)(am)”‘“"

n=0 n!
n#Ep+ k
( — 1)p+k+l

(p + &)

X [In am — (¥(p + k) + ¥)] (am)* 3. (3.19)

However, it is important to notice that expansion (3.19) is
also valid for any value of am, as in fact should be expected of

1 e(d=3), m=1
0.0E+000 -
—4.0E+006 |
—8.0E+006
—1.2E4007 — N —
0.00 0.05 0.10
a

FIG. 1. The Casimir energy density (e) for a unit mass scalar field in
S' X R? as a function of the length a.
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a negative exponential times a polynomial. There is a simple
way of checking this property, i.e., to find €(2p,q,0) from
expression (3.19). When setting m = 0, only the terms with
k = p and n = O survive and the remaining value is

2p—1

7= TV (p+ DERp+ 1),
(3.20)

G(ZP,a,O) = - azl’
in agreement with (2.11).
C. Numerical results

Application of (3.12) and (3.19) for the space dimen-
sions 1, 2, and 3 gives
e(l,a,m)

- _2 [i _T

g (am(1+1(37))
_L 1 +mf%™
12 16 g Lem Il

PR WS-
1282 ™ F jgaag () F OL@m)),

€(2,am) = — (L/27a*){¢£(3) + L(am)*(1 + In am)
— (am)? + &(am)* — (1/17280) (am)*®

amT

+0((am)®)},
+grtam(5 +(57))
+E2 @m+ol@m)], 2D

where the first neglected coefficients in the curly braces, i.e.,
those for the terms of eighth order in am, have been evaluat-
ed, with the results — 1.60x 1077, 6.89%x 1077, and

— 6.50< 1077, respectively. The rates between the eighth-
order terms and those of order six turn out to be, in absolute
values, 0.015, 0.012, and 0.008. Thus up to these orders of

0+ a=0.20

-1200
0

FIG. 2. The Casimir energy per volume unit for a scalar field compactified
in a circle of fixed length a versus the field mass. The curves correspond to
three different values of a.
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accuracy, the truncated series (3.21) provide a reliable ap-
proxlmatlon for small values of am. In particular, the third
equation in (3.21) supplies a way of computing the Casimir
energy per volume unit e(3,a,m) =€(3,a,m) /L %ainathree-
dimensional space (S' X R?in this case) for a relatively wide
range of values of a and m. Some of these results are shown in
Figs. 1 and 2.
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APPENDIX A: MODE-SUM REGULARIZATION
The Casimir energy of a massive scalar field is very
closely related to the formal series

2 ()T

Equation (A1) can be regarded as a particular value of the
“Epstein—-Hurwitz” zeta function:

(A1)

Zsa)= 3 (P +a) "% Res>—.

=1

(AZ)

which admits, however, an analytic continuation to Re s < 4.
In the genuine Hurwitz function, we would have # instead of
n?, while for a true Epstein one, no n-independent term
should appear.

The analytic continuation can be done in the following
way. One writes

. _ < 1 ® s—1_ — U+
Z(s,a)—"z::1 F(S)J; drt e e

Cdrrite s (0, A3)
l"(s) 2 (
where S, is the analytic function
(=3 e (A4)
n=1i
J

having the useful property*

S,(1) = — + Walt + 7/t Sy(w/0). (AS)

By putting identity (AS5) into the integral in (A3) and after
doing two simple Gaussian integrations, we obtain

1 Jr 1
VA ] Ny e A F( __) 2y —~s5— 172
(s;2) 2(ar) +21"(s) s 5 (a?)
F‘/(;s) n;l A dtls—3/2e—x:n:/l— (A6)
Using
il v/2
f dxx""e“”"“”‘:Z(%) K, (2Jab), ab>0,
0
(A7)

where K, is the modified Bessel function, Z{s;a) can be
written as

Z(s;a)

—-25+ \/;

- _1, N7
2 20 'T'(s)

X [l"(s - %) +4 3 (7na)’ 7K, (277'na)],
n=1
(A8)
which does in fact provide the analytic continuation of

(A2).Fors = —d /2, a =am/2m, formula (A8) allows us
to obtain (2.8) from (2.7).

APPENDIX B: DOUBLE-SUM CALCULATIONS

Here we shall evaluate some cases of double series. Us-
ing a notation similar to that in Ref. 5, let us consider the
general types

l 0

SPUfs1= 3 — 3 me),
m= a=0
S@ & Inm & L. (BL)
P fsl= 3 = 3 mefla),
1

where fis supposed to satisfy (i) f(2) >0 for aeN and regular
for Rea>0 and (ii) am?f(a)e~ ""™9,0 as |a|— o for
Re a0 and fixed m. By applying a method analogous to
Weldon’s,” but taking into account possible contour correc-
tions,® we arrive at

i E(s+ 1 —aa)fla) —f(—s-)zcotﬁ—Ag‘“[ﬂs], —S—QN,
- a/ a a a

S fs] = 1

a
a;és/a

i §(s+1—aa)f(a)+7/f( )———f’(%)—Ag”[f,s], IeN

(B2)

The second terms on the rhs of (B2) are referred to as Weldon’s and A§” [/;s] is the correction term coming from integration
over the infinite semicircle on the right side of the complex plane (see Ref. 6), which is given by

A fs] EZLJ‘ dal(s+ 1 —aa)f(a)m cot ma.
il Jo

We will be concerned with @ = 2 and fonctions of the sort

Sfla)y =b/al(a + p),

(B3)

(B4)

where p, b have fixed values. In this case, the asymptotic behavior of the integrand for |a|> 1 is, for & and s real,
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a

b
1 —ag)—2
S+ aa)a!(a+p)!

T cot ra

~2Q27) Vg 12 exp{(Z —a+n b(—za—)a)a + ((a ~2)a—2p—s~— %)ln a]
T

- %’sgn(lm a)exp[—;L[Im(Za -9+ i%Re(Za — s)], for Im a0,

X
T Cot 7a cos %(20 —5),

If Im a = 0, cot wa may oscillate very quickly between
— o and + oo; however, it happens that the curved con-
tour contains only one real point, which has zero measure, so
its contribution can be neglected. The type of asymptotic
behavior of this integrand depends on a, with a critical value
precisely at a = 2. Thus for @ = 2 and given a fixed range for
the parameter s, we would like to know under which condi-
tions it is possible to ensure the vanishing of the correction
term. Setting a@ = 2 for Im a#0 and for |a| - «, Rea>0,
the two dominating terms in the exponential are

[In(b/7*)}a + 7|Im a|. (B6)

It is not difficult to see that a sufficient condition for the
asymptotic vanishing of (B5) is that obtained by imposing

In(b /7)) + m<0, (B7)
1.e.,

b<b,, b, =me""=0.4265. (B8)

Therefore, b, is a bound below which there is no correction
term: Above this value, there may be a small correction
term; it will certainly exist for much larger values of b. For
the sake of simplicity, we will assume that our b satisfies
(B8): This will make it possible that

Ay | fla) = (B9)

b—,s] =0,
al(a + p)!

It is quite interesting to observe that for the series appearing
in the expansion of the Casimir energy, b is none other than
am/2, where a is the compactification length and m is the
mass of the field [see (3.7) and the resulting double series
(3.10)]. The existence of b., or any more accurate upper
bound for the absence of correction terms, should not seri-
ously worry us because it was already known that expansion
(3.7) in powers of am/2, which gave rise to the double series
(3.10), was valid only for small values of am [and so were
the series in (3.10)]. Arbitrarily large values of am would
not make sense anyway. Thus from now on we will assume
that the value of b is small enough to forget about correction
terms.

Since we are interested in the value s = — 1, we have s/
a = — 1&N and therefore, (B2) gives
splfar = =2 —s=1]
al(a +p)!
o0 b a
= ( 2a ) -
a;o £ al(a + p)!

b2 T T
- ot —I)
(1Dl -1/ 2 0 ( 2)

(B10)
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(BS)
for Ima = 0.

[\s pointed out in Ref. 5 (Appendix A), the vanishing of the
second term caused by the occurrence of cot( — 7/2) would
make a naive summation interchange valid for particular
cases such as this one, although that cannot be acceptable in
general. Furthermore, since £( — 2k) = O for & positive in-
teger and £(0) = — 1, the result (B10) reduces to

be 1
S‘Z’[ a)=———,s=——l]=————, B11
5 |t al(a 4+ p)! 2p! ( )
which gives the value for the second sum in (3.10).
Another case of interest is the one given by
fla) = [b°/al(a + p)']C(p,a),
Cpa)=yla+1)+¢¥la+p+1), (B12)
1 d
2)y=———TI(2),
¥(2) TG (2)
with @ = 2 and s = — 1, as before. Actually, because of the

decrease of C(p,a) as |a| — «, there is no correction from the
semicircumference either. Retracing these steps, one can
quickly arrive at

_ b

al(a + p)!
1

= —— C(p,0),
2 (p,0)

S| fla) = Cpa)s= —1

(B13)

which is the result for the third series in (3.10).

Now let us turn to S (¥’ [£,5]: This double series can be
easily dealt with by noticing that since ln m/m--0 when
m— o, as far as the m summation is concerned, its behavior
is of the same sort as that of S {7’ [fs], provided that s can
arbitrarily vary before making the analytic continuation to
s = — 1.Infact, it would be enough to think of s as being one
unit larger than in the previous cases. Taking this into consi-
deration, it is correct to put

S = — 25Ul
Let us again take the case where f(a) is given by (B4) and
a = 2. Since b is supposed to be small enough, the same
reasoning concerning the vanishing of the correction term

(B14)

applies. Bearing in mind that for s= — 1, @ =2, and s/
a&N, one can evaluate the derivative of (B2) with respect to

s for the fin (B4) and set s = — 1. The outcome is

SP1fla) =—b-—,s= — 1}
al(a + p)!
) 1
=___1_+Z (—1)e+! (24!)

2pt = 2(27)*al(a + p)!

x¢Qa+ b —T Ly (Bis)
4 Jr(p—
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Equation (B15) is the result for the first series in (3.10). To

obtain (B15), use has been made of the identities
§'(0) = —LIn2mn,
$'(=2k)=4{(—D*Qm) ~*TQk+ D2k + 1),
k=12,3,..,

(B16)
where the second can be easily found through derivation ot;

Salfsl=

Y S+ 1—a)(—Dfa) + (= DYf(s) —f(s)), forseN.
a=0

axs

The particular case we will be looking at is the one corre-
sponding to

Liy(e™ ™) = z —II—V— e~ "= N positive integer. (B19)
n=1RH
By expanding the exponential, it is clear that f(a) = a*/k!,
which has the appropriate behavior. Since we have
s = N — 1eN, we must take the second possibility in (B18),
which gives

Liye=H= S &WN—a)(— 1)"%;
a=0 H

a®¥xN-—1
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i §(s+1—a)(— 1)’fla) — f(s)mcsc(ms), for seN,
a=0

the zeta-function reflection formula.
Finally, we are also concerned with sums of the sort

S sl = 3 —

1
merm't

S (= Dmfa). (B17)
a=0

When a =1, Weldon’s complex integration method
gives a totally correct result®:

{B18)

N1
+ (= DV 'y —Inx + Y(N)).

I’'(N)
(B20)
This allows us to obtain (3.19).
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There are several ways to construct functions in involution on a Lie bi-algebra, a Lie algebra
equipped with a second Lie bracket. For the solvable systems associated to the Casimir
functions a second Hamiltonian formulation can be constructed and a class of bi-Hamiltonian
Korteweg—de Vries-like evolution equations with explicit space dependence is derived.
Translating the Casimir functions with the flow of a special vector field yields another set of
functions in involution. Lenard relations are found for the corresponding Hamiltonian
systems. Finally, solutions of the classical Yang-Baxter equation lead to an analog of
compatible Hamiltonian pairs. The invariants of the resulting hereditary operators are in

involution.

I. INTRODUCTION

Many of the integrable systems discovered in the last
two decades have a Lie algebra background giving direct
access to most of the striking features found for these sys-
tems. One of the most essential tools for solving these equa-
tions is given by their Lax representation. One may think of
the Lax equation as the abstract dynamical system from
which the “physical” dynamical systems are obtained by in-
troducing suitable charts. Hence the phase space for most of
these equations can be regarded as given by the set of Lax
operators taking values in a Lie algebra or the Hilbert space
of currents over a Lie algebra. In this sense in many cases
(e.g., the Toda lattice) the phase space itself is a Lie algebra;
other examples (e.g., the Calogero-Moser system) are ob-
tained by reduction techniques applied to certain Lie alge-
bras. A review of the relevant involution theorems is found
in Ref. 1. Also, infinite-dimensional equations such as the
celebrated Korteweg-de Vries (KdV) equation can be re-
garded as systems on an infinite-dimensional Lie algebra of
pseudodifferential operators.>

It has turned out that the factorization method and the
group of dressing transformations for these integrable sys-
tems can be understood in terms of Poisson-Drinfeld groups
acting on the phase space.’ In this setup, dressing transfor-
mations are Poisson maps relative to the Poisson structure
on the product of the group with this phase space. The Pois-
son structure on the group corresponds to a Lie bracket on
the dual of the associated Lie algebra or a second Lie bracket
on the Lie algebra, respectively. It is engendered by a linear
map called the “R matrix,” which leads to a direct construc-
tion of integrable systems using the Casimir functions on the
dual algebra. In special situations the R matrix also gives a
direct construction of the second Hamiltonian formulation
for these equations.?

In this paper we will investigate how functions in involu-
tion can be constructed from a given R matrix. After giving
the definitions in Sec. II we will review the Adler-Kostant—
Symes scheme®' in terms of R structures in Sec. IIIL. It is
shown how bi-Hamiltonian systems involving two arbitrary
functions can be constructed systematically by applying
these considerations to the Lie algebra of pseudodifferential
operators as in Ref. 2 and a class of KdV-like equations with
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explicit space dependence is obtained. In Sec. IV we will give
a generalization of an involution theorem by Mishenko and
Fomenko.” Special R matrices provide examples for this
theorem: Translations of Casimir functions by the flow of a
special vector field related to the R structure yield functions
in involution. In Sec. V we show that a Lie Poisson structure
and R matrices given by solutions of the classical Yang-
Baxter equation®® form an analog of compatible Hamilto-
nian pairs in the sense of Refs. 9-11. The spectrum of the
resulting hereditary operator is in involution relative to a
hierarchy of Poisson brackets.

The basic reference for the first sections is the article by
Semenov-Tian-Shansky®; further references to R matrices
and the structure of Poisson-Drinfeld groups are found in
Ref. 12.

|I. DEFINITIONS AND BASIC PROPERTIES

Definition 1: An R structure is a Lie algebra g equipped
with a linear map R:g - g (called the R matrix) such that the
bracket [a,b] z: = [Ra,b] + [a,Rb] is asecond Lie product
ong.

When the Lie algebra can be identified with its dual via a
nondegenerate, symmetric invariant metric

(LlsL2> = (Lz:Lx)9 (Lu[LzsL3]> = <L2’[L3’LI]),
2.1)

we sometimes will assume the “unitarity” condition
(RL,,L,) + {(L,,RL,) =0 (2.2)

for the R matrix, i.e., R is assumed to be skew symmetric
relative to the pairing (2.1). One easily checks that the Ja-
cobi identity for [ , ]z can be rewritten as the Jacobi identity
of the expression [ [Ra,Rb] — R[a,b],c]. Hence claiming
the first entry to be just a scalar multiple of the original Lie
bracket [, ] is a sufficient condition for R to be an R matrix,
ie.,

[Ra’Rb] —R [ayb ]R = - a[a’b ]’ (2.3)
where a is a scalar parameter. Following Ref. 4 we will refer
to (2.3) as the Yang—Baxter equation, or YB(a) for short.

The correspondence of this terminology to the classical ten-
sor notation is explained in Ref. 4. In reference to the depen-
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dence of the parameter a, obviously only the two cases ¢ = 0
and a = 1 have to be considered since for any a0 the dila-
tion R — (1//a)R maps the solution of YB(a) to solutions
of YB(1). The case a@ = 1 is also called the modified Yang—
Baxter equation.

Observation 1: Any solution R of YB(«a) for the Lie
bracket [ , ] also solves YB(a) for the Lie bracket [ , ]z.

As a result of this observation one can iterate the con-
struction of a “modified”” Lie bracket by starting with [ , ]z
instead of [,], thus obtaining a third Lie bracket
[a,b]rr = [Ra,b 1z + [a,Rb ]|, etc. Hence an R structure
equips a Lie algebra with a hierarchy of Lie brackets, where
the nth iterated bracket is given by

dll
dt"

la,b ek = [eRa,e®b ]

!

=0
=3 (Z)[R*a,R k1. (2.4)
K=0

Each bracket induces a Lie Poisson structure on the dual g*
given by

Here the f; are scalar-valued functions on g* and their differ-
entials are interpreted as elements of g (rather than of the
bidual g**). Here L is chosen for a point g* since in the
applications L will be the Lax operator for the considered
integrable systems.

There is a special class of solutions to YB(1) that arises
in a very simple manner: Assume that the Lie algebra can be
split into a direct sum of subalgebras, i.e., g =g, ¢g_. De-
noting the projections onto the subalgebrasby P, and P_, it
is easily verified that

R=P, —P_ (2.6)

solves YB(1) and hence defines an R structure on g. In this
case the hierarchy of Lie brackets generated by R reduces to
just three different brackets:

[a’b ]’[arb ]R = 2[a+9b+] - 2[(1_,b_],

[a’b ]RR = 4[a+!b+] + 4[a~1b— ]’

[a,b 1rrr = 4{a,b 1 g, s
where the subscripts denote the projections to the corre-
sponding subalgebras.

For YB(0) there does not seem to be such a natural class

of solutions. Assuming invertibility, though, YB(0) can be
rewritten as

O0=[Ra,Rb] —R[ab],
=R(R '[ab] —[Ra,b]

—[aR~'b]), @=Rab=Rb; (2.7)

hence solutions of YB(0) model the algebraic properties of
the inverse of a derivation on g. Hence in the presence of an
invariant metric, a unitary solution of YB(0) models the
inverse of a symplectic two-cocycle
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B(L,L,) = (R ~'L,L,), B(L,[L,Ls]) + cycl =0.

(2.8)

For both cases (a@ = 0,1) a systematic scheme of solving the
YB equations is given in Ref. 6, even for the more general
case when R depends on some additional parameter in a
specific way.

Ili. INVOLUTION OF RESTRICTED CASIMIRS

The following results hold for arbitrary R structures,
i.e., not only for those arising from solutions of YB equa-
tions. Let R be an R matrix on a Lie algebra (g,[ , ]). By g*,
g% we denote the dual of g endowed with the Lie Poisson
structures arising from [ , ] and [, ]z, respectively.

Theorem 1 (Ref. 4): (i) Casimirs of g* are in involution
on g%. (ii) Let Cbe a Casimir function of g*. The associated
g% - Hamiltonian vector field has orbits in the symplectic
leaves of g*. The form of this Hamiltonian system is

d

— L =ad¥ L, Leg*

gy R dC eg*
where ad* is the coadjoint representationof g (w.r.t [, ]). If
g and g* can be identified by a [ , ]-invariant metric, then

(3.1) becomes a Lax equation:

45 [L,RdC]),
dt

3.1

Leg. (3.2)

Proof: It is most convenient to think about the Poisson
bracket in terms of the Poisson tensor P defined by
{fi, o} = (df,,Pdf,),i.e., Pcanbe regarded as a skew-sym-
metric linear map from the covector fields to the vector
fields. In the Lie Poisson case this tensor is given by
P(L):g—g*, P(L)y = ad}L, yeg. The Poisson tensors aris-
ing from the Lie brackets [, ], and [, ]z are related by
P, = R*P + PR, where R here has to be understood as the
pointwise lift of the map R on g to the vector fields over g,
where R * is the transpose of this map. Casimirs on a Poisson
manifold are those functions Poisson commuting with all
functions on the manifold; their differentials lie in the kernel
of the Poisson tensor.'* Thus the Hamiltonian vector field
Xc = Py dC of such a function has the form X. = PR dC
and hence takes values in the image of the Poisson tensor P
which spans the tangent spaces of the symplectic leaves in
g*.

We want to look at the special case of an R structure
(2.6) given by a splitting into two subalgebras. With
g=g,.98 ,R=P,  — P_,Leg*, f,,/,cC> (g*) one calcu-
lates the Lie Poisson bracket arising from [ , ]z

= 2(L,[(df)) _,(df) -1 (3.3)

The projections P, df of a differential coincide with the
differential of the restrictions f|g‘ . Hence restricting L to

+
g% _ (identified with the null spaces g% ={Leg*,
(L,L,)=0forall L  eg_ }) one recovers the usual Lie
Poisson structures { , } g On the duals of the subalgebras:
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{fufibe (L) = £ 2(L,[(df) . ,(dfy) . 1)
=22/,  fa, T (D), Leg.
(3.4)

Hence functions in involution on g* can be restricted to func-
tions in involution on g% . For Casimir functions C on g*
(characterized by [L,dC] =0) the explicit form of the
Hamiltonian systems (d /dt)L = X = [L,R dC] is given
by

%L+ =2[L,dC, ] +2[L_dC,],
= —2[L,dC_],,

‘_‘:;L_ = —2[(L,,dC_]1_—2[L_dC_]
=2[L_,dC,]_, (3.5)

where we now have assumed an invariant metric on g. These
dynamical systems obviously leave the subspaces g, invar-
iant and coincide with the Lie Poisson Hamiltonian systems
of the restricted Casimirs on these subspaces.

Thus it turns out that the Hamiltonian systems de-
scribed by Theorem 1 are (up to irrelevant constants) those
described by the Adler-K ostant-Symes scheme.!* Thinking
about these systems in terms of R structures at this stage
gives the additional information that these equationson g,
(or g_) are restrictions of larger Hamiltonian systems on g.

In special situations the R structure gives a direct ap-
proach to the second Hamiltonian formulation encountered
for many of the integrable equations as follows.

Theorem 2 (Ref. 4): Assume g to be an algebra identi-
fied with g* via a nondegenerate, symmetric “trace form”
Tr:g—-R,ie., (L,L) =Tr(LL) = Tr(LL),L,Leg. Let Rbe
an antisymmetric solution of YB(a) relative to the Lie
bracket [L,L] = LL — LL. Thenfor f,, /,C* (g) we define

{fufoho(L) = (L df\,RLdf;) — (dfy LR df, L).
(3.6)

(i) This bracket defines a Poisson structure.
(ii) This bracket is compatible with the Lie Poisson
structure

{.fI’fZ}R (L) = (L, [dfvdfz]R )

in the sense of Refs. 9-11, i.e., the sum of these brackets is
again a Poisson structure.

(iii) Casimir functions of (g,[, ]) are in involution
w.r.t. (3.6).

Proof: Statement (i) is shown by a lengthy computation.
Then (ii) is obtained easily by substituting L - L + €l into
(3.6). As the differentials of [ , ] Casimirs commute with L,
(iii) follows trivially.

The situation described by Theorem 2 certainly seems
rather special: Nevertheless, in many applications the under-
lying Lie algebra g is indeed a matrix or operator algebra
such that this theorem can be applied to that situation. The
most restrictive point is claiming R to be antisymmetric
w.or.t. the trace form. For the splitting case
g=g.,98_,R=P,_ — P_thisisgrantedifg_ =g* ,1ie,

(3.7)
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Tr(LL) =Te(L,L_)+Tr(L_L,). (3.8)
A natural example of such a structure is given by
g=gaclii = {3 Lithes],
i (3.9)

(g} g

where g° is some algebra with a trace form tr that is lifted to

Tr(L) =Res; _, tr(z LA ") =tr{l_,). (3.10)
keZ

Note that in this situation the quadratic Poisson bracket
(3.6) can also be projected to the subalgebras. One finds

(3.11)

Obviously, restrictions of functions in involution on g yield
functions in involution on the subalgebras.

Although the Casimir functions on g are in involution
w.r.t. both brackets (3.6) and (3.7), the associated Hamilto-
nian systems (3.2) are not necessarily bi-Hamiltonian w.r.t.
both Poisson structures in the sense that these equations also
leave the bracket (3.6) invariant. However, in most applica-
tions a natural set of Casimirs is given by the traces of some
powers of the Lax operator, i.e., C,:=tr(L9),
dC, =qL 7" and hence

%L = [L,RdC,] = -‘}z—l[L,RL dC,_,]. (3.12)

Note that for Casimir functions the Hamiltonian system as-
sociated with (3.6) assumes the form

4 _[LRLA4C),
ar

(3.13)
so the system (3.12) is not only Hamiltonian relative to
(3.7) (with the Hamiltonian function C, ), but also relative
to (3.6) (with the Hamiltonian function [¢/(¢ — 1)]C, _,).
In the following application we will exploit this to derive the
bi-Hamiltonian structure (and hence the recursion opera-
tor) for a class of KdV-like equations with explicit space
dependence.

Example 1: Following Ref. 2 we will consider the ring of
formal pseudodifferential operators as the formal Laurent
series in the variable £, with coefficients in a ring S of func-
tions of one variable x, i.e.,

g= L’j[ S 4, (x)§"|dkeS]

endowed Wit;l e:he multiplication
-3 2l )T
L= 3 4,064 I= 3 3, (0¢"ee.

Indeed, withD = 3 /3x,I = (8 /dx) ~',f. = df /dxthemul-
tiplication (3.14) models the properties of the algebra of
pseudodifferential operators:

(3.14)
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] =898,
(3.15)

where the formal integration operator 7 is subject to the
(purely algebraic) rule

Y=fI—fIP +f I~
fI=If+I°f, + If +

Using (3.16) it is more convenient to rewrite the elements of
g as ‘

g=U{§: ak(x)Dk]ea{i e (x)I*
mlk=0 k=1

(3.16)

(3.17)

={i I"*‘bk(x)].
k=0

Introducing a “trace formula”

TI'(L) = Tr( i Ik+ lbk + 2 aka): =J bo dx,
k=0 " k=0 — o0
(3.18)

one observes
m

(L ,L_):=Tr(L,L_)= fw ( 2 akbk)dx, (3.19)

— o \k=0
with

L.=3 I**beg , L, = aDre,.
k=0 k=0

Assuming the function ring S to be equipped with the usual
L, scalar product given by integration along the real axis we
impose g_ to carry the topology of /,(S). Thus it can be seen
from (3.19) that g__ is dense in the dual of g_. Hence up to
closure (which we will omit in our notation since it is of no
relevance for the following) the above trace engenders a
nondegenerate duality betweeng  andg_,ie.,g, =g* .In
Ref. 2 it is shown that the I coefficient of a commutator
[L,L1, L, Legis always in the image of the differential opera-
tor D. Assuming that the coefficients a, , b, of the operators
vanish rapidly as x— 4+ «, e.g, thinking of S as the
Schwartz space of smooth functions vanishing rapidly at in-
finity, one finds

(LLL):=Tr(LL) =(L,L), (3.20)

thus giving a symmetnc, invariant, nondegenerate trace
form on g such that Theorems 1 and 2 can be applied to this
setup.

We will calculate explicitly the bi-Hamiltonian formu-
lation (3.12) of the integrable equations obtained from
Theorems 1 and 2. To this end one has to calculate the Pois-
son structures (3.6) and (3.7) at a given point L == ++- +
I*b, +Iby+ay+ - +a,, D™, where the functions
...b,b4,a,,...,a,, Will be considered as the “physical” coordi-

J

L=a,D"+a,_ D" '+

—2[Ldf_ 1., —2[a,,,D”'+a,,,_,D"“1 +

—2((m— Da,, (;Z)) +(
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’

i) )Dm—2+...Dm—3+,,_Dm—4+

nates of the abstract equations (3.12). If one thinks of a
scalar valued function fon g as given by a functional

fL) = f ) F(...b,,b0,Ggr.,,, Y (3.21)

of the physical coordinates (and their derivatives), then its
differential, interpreted as an element of g, is given by

of O o«
df(L)y=S 1+ =L 4 DX 3.22
4 kz>0 ba, k>20 8b, ( )
where
i=ﬁ€_(_aF) +(‘9F) . (3.23)
da da da, /. da,. /..

is the Euler operator. Indeed, with L = S/**+' b, + 3a,D*
one obtains

@ Ly= (zak I+ 3 bl
— k k
Xdx = f(L +€L). (3.24)
ae‘e=0

Inserting (3.22) into (3.6) and (3.7) gives the explicit form
of the Poisson brackets in terms of the physical coordinates.
Of course, since the elements of g_ consist of infinite sums,
the resulting brackets involve infinitely many of the vari-
ables b, and hence are difficult to use. However, as noted
previously, both Poisson structures are projectible to g,
where only finitely many variables are involved when calcu-
lating the tensor at a given point L = 27_,a, D *eg, . In-
serting

df)_=3 1*+'— &, , =12 (3.25)
k>0 5 a;
into the projected bracket (3.4), i.e.,
{flez}R(L) = —2tf(2 aka
k=0
3]

X e+t 2L N per1 2

[g:o da, (,;) ba,
(3.26)

shows that only 27 -2I**'(8f,/8a, ) contributes, i.e., the
Poisson bracket (3.7) is actually projected to the submani-
fold given by fixing the two highest coefficients a,, and
a,,._, of the operator L. Indeed, it is easily seen that the
Hamiltonian systems

1 o
60 ba,

.

(3.27)
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leave these two highest coefficients constant. We rewrite (3.26) in terms of the Poisson tensor Py as

{fufi}a (L) = <df;,PR<L)dﬁ>—f

oo i j)O
and obtain
—2a,D—2Da, 0 O
P, = 0 0 0
0 0 O

6f‘2 PRI](L) 6f"

(3.28)

I

(3.29)

when evaluating for m = 2, i.e., at the point L = a, + a,D + a,D>.
Similarly, using the g, projection (3.11) of the Poisson bracket (3.6), inserting (3.25), and again evaluating for m = 2,

the Poisson tensor

U iD= Py = |

o i j>06
1s found to be

2( —a,D3a, + a,D%a, — a,D’a, + a,Da, — aya,D — Daa,)

I:)2 = 202D(a|

0

— Da,)

Checking the explicit form of (3.11), it is easily seen
that at any point L =3}_,a,D"g, the components
P, ,Psisi = 0,...,m vanish, i.e., the second Poisson struc-
ture is projectible to the submanifold given by fixing the
highest coefficient a,,, . Hence all Hamiltonian systems rela-
tive to P, leave the coefficient a,, invariant. To obtain the bi-
Hamiltonian vector fields (3.12) relative to P, and P, we
will now consider explicitly the Casimir functions
C,(L)=Tr(L?% for m=2, ie., at the point L=aq,
+aD+a,D>.

Obviously, the functions C,,geN vanish identically
when restricting them to g, . However, for certain geQ the
fractional powers L? can be calculated easily on a purely
algebraic level, yielding nontrivial functions in involution on
g,.For L =37_.a, D* one sets up the ansatz

LVY™=aY"D + Ay + IA, + I*4, + - (3.32)

and calculates the mth power of this ansatz and compares it
with L, thus obtaining a straightforward recursion scheme
for the coefficients 4,,4,,..., e.g.,

(ap+a,D + a,D*)'?

=J£D+%(J‘;;Z —(J?z;u)

3a? a
+ I< ao _ aZx + 2xx
Wa, 3R2Jad  8a,

_ alx a,a;, a ) (3.33)
TWE W
+I( D0 A GRED I SEER

For m=2 an interesting set of Casimir functions
C,,, (L) = Tr(L "?), neN thus can be calculated explicitly
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2 5f.2 PZ:](L) 6f‘1 dx

(3.30)

2(a,+a,D)Da, O
4a,Da, o} (3.31)

0 0

by multiplying the above root of L with integer powers of L.
From (3.5) the associated Hamiltonian systems are calcu-
lated as

d

S L=2[L{dC,n (1)) ] =nlL(L™7H.].  (334)

In the physical coordinates 2,,a,, and a, the first nontrivial
of these equations (# = 3) has the form

il—ao =3 ( — 16a,,a2
@ " 16/a}
- Sagx - 4a§“2xxx + 60202xa2xx - 8alvaazx
+ 8a1xxa% + 8ala§x - 8ala2a2xx
+ 8a,a,.a, —4dla,,), (3.35)
—4— a, =0, 4 a,=0
dt dt

The higher equations are very complicated since for n = 5
the time evolution of g, is a lengthy expression of 50 terms.

All equations (3.34) admit the bi-Hamiltonian formu-
lation (3.12) relative to the Poisson operators (3.29) and
(3.31). As discussed previously, all equations (3.34) imply
(d/dtya, = (d /dt)a, = Oand hencecanbeinterpreted asan
evolution equation for a, in which a, and &, turn up as arbi-
trary and fixed (i.e., time-independent) parameters. Obvi-
ously, the first Poisson operator (3.29) can be projected to
the submanifold spanned by the g, coordinate, i.e.,

®r = — 2a,D — 2Da, (3.36)

is a Hamiltonian operator for the a, component of Egs.
(3.34). Here a, is now regarded as a parameter rather than
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as a variable. For the second Poisson structure (3.31) one
observes that resulting from (3.12) the a, component van-
ishes, i.e.,

8C &6C
10 54, + Py 5a, =0
for the relevant functions C. Solving (3.37) for 6C /éa,
yields

P, (3.37)

% ay =P, %?; P,y g—f:
= (P00 — Pro1 (Py )—lPZJO)g_:' (3.38)
Indeed, the operator
B, =Proo — Proi (Po11) " 'Pyyo
= —a,D%, + a,D%a, —a,D?a,
+ a,Da, — 2a4a,D — 2Daya, (3.39)

turns out to be a Poisson operator (relative to the a, coordi-
nate) and compatible with (3.36). Hence (3.39) and (3.36)
form a compatible pair of Hamiltonian operators for the a,
components of (3.34) and a hereditary recursion operator is

given by
d=0,0;",
—1 1 oy 1 —1 *
Orp'= — D , DTl = - dE.

(3.40)

The hierarchy of commuting integrable equations obtained
by applying (3.40) to the first of Eqs. (3.35) gives (up to
constants) the @, component of Eqs. (3.34). Here ¢, and a,
are now arbitrary functions.

By construction all these equations admit L =gq,
+ a,D + a,D? as the Lax operator and the Lax formulation
is given by (3.34). Obviously, for the special choice
a,(x) =0, a,(x) = 1 one encounters the Schrédinger oper-
ator and all structures constructed here reduce to the well-
known structures of the KdV hierarchy.

For the special choice a,(x) = €/x, a,(x) =1 (3.35)
reduces to

d 3Je(—¢)

4= —3aOX +

- - (3.41)

0 — 6D
® =( )’
R —6D O

B (g(D5 + D%, +aD?+aDa,)+2a,D* —2D"a,
, =

2D* 4 2D%a, — 2a,D — 4Da,

and the next equation of the hierarchy (n = 5) reduces to
the following explicitly space-dependent KdV:

d 5 15¢(e — 2)
Z“o = _—4’(%xxx + 6400, ) +Ta0x
_ 15¢(e —2) a 15(e +2)e(e —2) (e — 4)
4x° 0 16x° ‘

(3.42)

Example 2: The analysis of Example 1 can be carried out
at any point Leg . The hierarchy of bi-Hamiltonian equa-
tions corresponding to the Casimir functions C, = tr(L?),
q€QQ always leaves the two highest coefficients of L invariant,
so that the coeflicients enter the hierarchies as two arbitrary
functions of the space variable x. Hence each evaluation of
the structures discussed previously at a given point Leg
provides an example of an infinite-dimensional integrable
system, with the explicit space dependence given by two ar-
bitrary functions.

Having done the explicit calculations at the point
L = ay + a,D + a,D?in Example 1 the next simplest exam-
ple is given by the point L = a, + a,D + a,D? + a,D> In
terms of these coordinates one obtains a hierarchy of bi-
Hamiltonian systems in the field variables a, and a;, with the
two arbitrary functions a, and a,. Already, it turns out that
the first equations, as well as the two Hamiltonian formula-
tions, are very lengthy for arbitrary a, and a,; hence we only
give the results for the special restriction a, =0and a, = 1.
For L = a,+ a,D + D* one finds the following first ele-
ments of the hierarchy (3.12):

d dfa — Qox
_L= L’ LI/3 _( O)z( )’
o [L,( )+]C>dt a, _

iL =[L,(L2!3)+]<:>i (ao)

3.43
dt dt \a, ( )

( - anx + %alx.xx + %alalx)
Qixx — 2a0x

From (3.4) and (3.11) the Hamiltonian pair for the hierar-
chy is (3.12) is found to be

(3.44)
—2D*—-2a,D?—2Da, — 4a(,D)
—4D* —2a,D —2Da, ‘

Asin Example 1, the tensors (3.44) are found by calculating the Poisson tensors P; and P, from (3.7) and (3.6) at the point
L =a,+ a, + a,D? + a,D? and then projecting these operators to the submanifold given by a, = 0,a; = 1. An argument
similar to (3.37) and (3.38) is applied, i.e., ®, is given by

®. = (Pz.oo - Pz,oz (Pz,zz )_lpz.zo Pz,m - Pz,oz (Pz.zz )_lpz.zl) (3.45)
? P2,lO —Pz,xz (Pz.zz)_le,zo Pz,n “‘Pz,lz (Pz.zz)_lpz,zl
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The first conservation laws associated to the hierarchy (3.12) are given by

@«

tr(L '/3) =J- %a, dx, tr(L??) =J

—

IV. INVOLUTION OF TRANSLATED CASIMIRS

Throughout this section we will assume that R solves
the modified Yang-Baxter equation YB(1) and R* = 1. We
remark that YB(1) is now just the hereditary property, as
introduced in Ref. 10. Note that the typical example
R=P_ — P_ of the splitting case does indeed satisfy
R ? = 1; hence any splitting of an algebra into subalgebras
provides an example for the structures to be discussed in this
section.

In this case R equips g with three additional Lie brack-
ets:

[a’b ]R = [Ra’b] + [G,Rb ]y
[a,b]s =R [a,b]e,
[a9b]T = [ayb ]R —R [a!b ]

(4.1)

Thebracket [ , 1 coincides with i[, 1&g of the general iter-
ative scheme of Sec. IT and [, ] is an additional bracket
special for the case of a hereditary operator.

As a result of observation 1 the R matrix again solves
YB(1), starting with [, ] or [, ] instead of the original
bracket; it is easily checked that the same is true for [, ] ;.
Iterating the construction of modified brackets, i.e., calcu-
lating the R, S, or T'modifications of these new brackets, one
just recovers the original bracket and its modifications
(4.1),C.g., [ ’ ]TI‘ = [ ’ ]9[ ’ ]RT = [ ’ ]S,CtC.

Via P, P, P, and P; we denote the Lie Poisson tensors
associated to the four brackets on g. The following simple
observation immediately gives further information about the
involutivity of Casimir functions.

Observation 2: Consider the vector field X(L) = R*L
on g*. Then

LyP= —P, L,P.= —P,

4.2
LXPR=—PS’ LXPS=_—PR’ ( )
where L, is the Lie derivative into the direction of X.
In addition to the results of Theorem 1 we obtain that
Casimir functions on g (w.r.t. P, i.e., [ , ]) are not only in
involution w.r.t. Py, but also w.r.t. P, as

0=L,{C,,C,} = (Ly dC,,PdC,)
+ {dC,,(LyP)dC,) + (dC,,PL, dC,)
= (dC,,(LyP)dC,) = —{C,,C,}y. (4.3)

With the same argument Casimirs of the [ , ], bracket arein
involution w.r.t. P, by Theorem 1 they are also in involution
w.r.t. Pg (since [, ] turns out to be the R modification of
[, 17). Note that the Casimirsof [ , ] and [ , ] (as well as
thoseof [, ]z and [, ]s) arein 1:1 correspondence, as can
be seen easily from the identities

1146 J. Math. Phys., Vol. 30, No. 5, May 1989

-i—a(, dx, tr(L*?) —_-f %aoa, dx.

(3.46)

{foR*goR*} ={fg}oR™,

44
{foR*goR*}, = { fg}soR ™. (44)

However, there is still another way of obtaining func-
tions in involution from Observation 2. With L, Ly P= P
(and the same for Py,Ps, and P;) one finds an application
for the following lemma which holds for arbitrary Poisson
manifolds.

Lemma 1: Let P be a Poisson tensor on some manifold
and let X be a vector field with flow F,. If LyL,P = aP
(where a is a scalar factor), then

{C1°F:, ,Cy0F, = {Cl°F:. ,C,0F, }L,P =0 (4.5)
for all Casimir functions C,, C, and all times ?,,7,€R.

The proof is given in the Appendix. The above state-
ment does not depend on the Poisson property of the tensor
P; it holds for any skew-symmetric (or symmetric) tensor
field of the type (0,2). In fact, the Lie derivative L, P of a
Poisson tensor does not necessarily yield a Poisson tensor,
i, {f,g},,»: = (dg,(Lx P)df) might not satisfy the Jacobi
identity. If L, P turns out to be Poisson, then it is automati-
cally compatible with P, i.e., the sum of these two tensors is
again Poisson. In this case Lemma 1 leads to the construc-
tion of a family of functions in involution w.r.t. a Hamilto-
nian pair.

An example for the case @ = O is given as follows: Let P
be the Lie Poisson tensor on the dual g* of a Lie algebra.
Choose X(L) = L, (a constant element of g*). Then L, P
yields a coboundary {fg}, ,= (L, [dfidg]) and
LyLyP=0. The flow of X is given by F,: L—L + tL,,.
Hence Lemma 1 yields the result: The set of one-parameter
families of functions C, (L) = C(L + tL,), where Cis a Ca-
simir function, is in involution relative to the Hamiltonian
pair Pand L, P. This was used in Ref. 5 to show the integra-
bility of the geodesic flow on semisimple Lie algebras.

Another example for the case @ = 0 is given by the Pois-
son—Drinfeld structure on Poisson Lie groups since its sec-
ond Lie derivative into the direction of any bi-invariant vec-
tor field on this group vanishes (Ref. 14).

Examples for the case @ #0 are given by the Lie algebra
splittings (2.6) and the resulting Lie Poisson tensors P, Py,
Pg, and P,. Again, the flow of X(L) = R *L is calculated
easily in this case:

F, =exp(tR*): L—cosh(¢)L + sinh(£)R*L.  (4.6)

Remark: In this construction it is quite easy to find vec-
tor fields satisfying Lenard relations, i.e., admitting Hamil-
tonian formulations relative to different Poisson structures:
As explained in the Appendix the translations of Lemma 1
are obtained by applying the Lie series exp (L ) to the Casi-
mir functions. Applying this series to the identity
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PdC=0
(identifying C as a Casimir function), one obtains
0 = (exp(¢Ly ) P)exp(sLy)dC)
= a(t)(P+ €(LyP))d(CoF,),

4.7)

ie.,

Pd(CoF,) = — e(LyP)d(C°F,), € =b(t)/a(t)
(4.8)

where a and b are the functions given in the Appendix. Ex-
panding (4.8) into powers of ¢ obviously yields Lenard rela-
tions, e.g., if the Casimir functions are given as
C, (L) = tr(L?) and the R matrix arises from a Lie algebra
splitting, then according to (4.6) (C,oF,)(L)
= tr((exp(tR *)L)?) is proportional to tr{(L + eR *L)?)
and one obtains an expansion

q
tr((L + eR*L)) = Chi(L)e~ 4.9)
k=0
According to Lemma 1 the set of functions C is again in
involution relative to P and LyP= — P; and Eq. (4.9)
yields

PdCY =P, Ck~ ', k=1""q. (4.10)

V. AN INVOLUTION THEOREM FOR UNITARY R
STRUCTURES

Throughout this section we assume that R is unitary in
the sense of (2.2). We will consider the presymplectic two-
form

wo(L,L)y =(RLL), L,LLeg (5.1

on g. Note that in the splitting case the R structure (2.6) is
unitary only if g_ = g* . In this situation (5.1) is just the
canonical symplectic form on the symplectic space
g=8.08% .

It turns out that an analog of a Hamiltonian pair can be
constructed with (5.1) and the Lie Poisson structure on g.
One has the more general lemma which follows.

Lemma 2 (Refs. 15, 16): Let wy(X,Y)(u)

= (By(uw)X,Y );ueM, X,YeT, M be a closed two-form on a

Poisson manifold M with the Poisson tensor P,. Define
®:=PBy, P, ,:=P"P,, and 0,(X,Y): = (B,d"X,Y).
Then one finds the implications (i) < (i) = (iii) = (iv)
&> (v) for the following statements: (i) all w,,’s are closed;
(ii) w, is closed; (iii} ¢ has vanishing Nijenhuis Torsion, i.e.,
L;.¢ =¢L, & for all vector fields x; (iv) P, is a Poisson
tensor; and (v) all P,’s are Poisson tensors.

For injective P, one also has (iii) = (ii) and for surjec-
tive P, one has (iv) = (iii). If B, is invertible, then (i) and
(ii) are equivalent to P, + B, ' being a Poisson tensor, i.e.,
to the notion of a compatible Hamiltonian pair.

According to this lemma it is sufficient to check (ii) to
find such a compatibility between B, = R [i.e., ®, given by
(5.1)] and the Lie Poisson tensor P( = P,) on g in the fol-
lowing.

Lemma 3: The two-form (X, Y)(L)

= (RP(L)RX,Y) = (L,[RY,RX]) is closed if R solves
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YB(0). This is shown easily since the invariance of the met-
ric implies

do\(X,Y,Z) = (Z,[RY,RX ]) + cycl

=(Z,[RY,RX] -R[YX]g). (52)
For invertible R another way of looking at this structure
is to regard (2.8) as a Poisson bracket

{fufoYo = Bldfp,df)) = (R ' dfy,dfy), (5.3)

which—as a two-cocycle—forms a compatible Hamiltonian
pair with the Lie Poisson structure. Hence Lemma 3 follows
by the compatibility criteria of Lemma 2. We remark that

and the square of the Nijenhuis tensor
D(L) =P(L)R: X-[RX,L] (5.5)

constitute the quadratic parts of the bi-Hamiltonian scheme
set up by Magri'? to describe the hierarchies of KdV and the
Kadomtsev—Petviashvili equation in a unified way.

The vanishing Nijenhuis torsion of the operator ® im-
plies that the underlying manifold, i.e., g can be foliated by
the eigenspaces of this tensor field. Up to certain additional
technical assumptions (essentially, diagonalizability of ®) it
can be shown'” that the invariants of ® are in involution
relative to all Poisson structures P,,P,,... of Lemma 2.

As the Lie Poisson tensor P constitutes a factor of ¢
[5.5], one of the eigenvalues vanishes identically. For invert-
ible R the zero eigenspaces of ® are spanned by the vector
fields R —! dC, where Cis a Casimir function of the Lie Pois-
son structure. We remark that these vector fields leave w,,
P, = Pand hence all closed forms and all Poisson structures
of Lemma 2 invariant.

For solutions of YB(0) we refer to Ref. 8. As remarked
in Sec. II, the inverse of a derivation on g solves YB(0) and
hence leads to a hereditary operator (5.5). On finite-dimen-
sional Lie algebras the construction of invertible derivations
is not straightforward or does not even exist, but for the
infinite-dimensional example of currents C* (R, g°) over a
finite-dimensional Lie algebra g° the differential operator D
provides a derivation that, subject to boundary conditions,
can be inverted.

As an example let us consider g = C* (R,gl(2,R)), with
the charts

_[(a:(x) a3(x)) ,_(a‘l"(x) az"'(x))
a_(az(x) a0) % =\ arn) €
(5.6)

endowed with the duality

L]

4
2 a*a;dx. (5.7)

(a,a*) =J tr(a*a)dx =
e —w i=1

An antisymmetric derivation on g is given by

R ~'=D + ad, , where Dis differentiation and b, is a fixed

element of g. Relative to the charts (5.6) R ~' (regarded as

the map from g to g*) and its inverse are found to be
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D b 0 0
0 D o of
0 -b 0 D
(5.8)
I 0 — IbI 0
R— 0 0 I 0
IbI I —2IbIbi —DoI Y}’
0O 0 IbI I

with I=D ' = §* ., assuming the elements of g vanish
rapidly at |x| = oo. Here b, has been chosen as
0 b(x))
= (0 29
°“ "\ o0

The Lie Poisson tensor, here regarded as the map
P(a):g*-g, has the form

(5.9)

0 —a, a, 0

P a, 0 a,—a, —a, (5.10)
—a; a,—a, 0 a,
0 a, —a, 0

The symplectic form given by R and the Poisson struc-
ture (5.10) form a compatible pair in the sense of Lemma 2
and the operator ® = PR is hereditary.

Rather than looking at the spectrum of ¢ it is more
convenient to look for a bi-Hamiltonian system generated by
R ~'and P. One finds a bi-Hamiltonian vector field

a;
““;"‘ =Pdf,=R"'df, (5.11)
—a,
with
fo= Jﬂn a,dx, fi = on (a,1a; + asla, — b(la,)*)dx.
o T (5.12)

According to the bi-Hamiltonian scheme (see, e.g.,
Refs. 9-11) all the covector fields y,: = (P*)" df, are
closed, i.e., locally y,: = df,,. The functions f, arein involu-
tion relative to R —! (regarded as the Poisson tensor),
®R ~! = P, ®*R ~! = PRP,... . These functions can also be
obtained via “master symmetries.”'>'¢ Note that the vector
field 7o(L) = L is a conformal symmetry for R, as well as for
the Lie Poisson structure P, i.e.,

LR '=2R"', L _P=—P. (5.13)
Checking L, f, = f, one concludes that

LYm=0+m+n)y,, . (5.14)
for r,,: = &" r,. Hence

Sosm =1/ +m+n)L, f, (5.15)

provides a scheme to obtain the higher functions using the
master symmetries 7,,n> 1.
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APPENDIX: PROOF OF LEMMA 1

For any smooth function f the composition with the
flow F, of a vector field X can be represented via the Lie
series

k

PF, = exp(iLy)f =3 1 (Ly)'f

Since the Lie series provides a homomorphism w.r.t. the
composition of arbitrary tensor fields 7, 7, on the manifold,
ie.,

exp(tLy)(T\°oT,) = (exp(tLy ) T,)olexp(tL)T>),
one obtains
{foF _,.goF _,},°F,

=exp(tLy){d(goF_,),Pd( foF_,))

= (exp(tLy)d(goF _,),lexp(tL,)P)

Xexp(tLy)d( foF _,))
= (dg,(exp(tLy)P)df ).

From Ly L, P = aP the remaining Lie series can be cal-
culated explicitly:

exp(tLy)P =a(t)P+ b(t)L,P
P4iL,P, fora=0,

cosh(\Jat )P

+ [sinh(Jat )/JalL,P, for a#0.

Inserting f = C,°F, ,g = C,°F, , one obtains
{CloFt. — K’CZOth — t}PoFt
=a(){C,°F, ,C,oF, }, + b(1){C\°F, ,C2°F¢2}pr-

For ¢t = ¢, and ¢ = t, the lhs vanishes since C,, C, are to be
Casimir functions. The resulting two homogeneous equa-
tions show that the brackets on the rhs vanish for all times
t,#t,. By continuity this result extends to ¢, = z,.
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Partial waves for the linearized Yang-Mills equation about a monopole

background
Shahn Majid

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 1 July 1988; accepted for publication 12 October 1988)

The properties of the monopole-vector spherical harmonics that are needed to transform
covariant differential equations on charged vector fields in the presence of a monopole into
purely radial ones are computed. This further extends the work of Wu and Yang [Nucl. Phys.
B 107, 365 (1976)]. As an application, the complete set of partial waves of SU(2) Yang-Mills
fluctuations about the U (1) monopole configuration are explicitly computed. They are
generated from the scalar solutions to the covariant Laplacian by the covariant operators D

and rx D, in analogy with the uncharged case.

1. INTRODUCTION

The fundamental paper of Wu and Yang' computed the
properties of the monopole-spherical harmonics {Y,,}.
These can be used to solve charged scalar field equations in
the presence of a monopole of charge g. The monopole-vec-
tor spherical harmonics { Y’} are also known. For example,
they were used to study general properties of gauge field
fluctuations in Ref. 2. We continue this line of development
by computing certain useful properties of the {¥/*}.

Thus, when g = 0, the spherical harmonics reduce to
the ordinary scalar and vector spherical harmonics. These
are very useful in electromagnetism® and other situations,
e.g., Ref. 4, because an expansion in terms of them reduces
invariant differential equations on R? to purely radial ones.
The work of Wu and Yang makes this equally easy for g0
in the scalar case, but the vector case has been severely limit-
ed by the complexity of the {¥/}. This is addressed by
Lemma 3.1, in Sec. I1I below, the main result of the paper. It
provides the necessary data to reduce covariant vector dif-
ferential equations in the presence of the monopole to radial
ones. The proof of Lemma 3.1 occupies Sec. III and the Ap-
pendix.

As an elementary application, the linearized Yang—
Mills equation for SU(2) gauge field fluctuations about the
monopole configuration is completely solved. This is done
by applying our lemma to the equations formulated in Refs.
2 and 5. These are set up in Sec. II along the lines of Ref. 5.
Previously, Brandt and Neri’ had studied these equations
and concluded the existence of certain unstable modes.
These will be evident among our explicit results for the com-
plete set of partial waves. The results also explicitly confirm
expectations about magnetic antiscreening, cf. Ref. 6. An
independent check of these modes is provided by geometri-
cal methods in Sec. IV.

The remainder of the introduction sets up the explicit
application and states the resulting solutions. From a math-
ematical point of view, we compute the tangent space to the
spaceof SU(2) Yang-Mills connectionsonR*> — OQor S>3 — 0
at a reducible connection, that of a U(1) monopole. On S*
reducible connections are known to have the structure of
conical singularities in &/ /% . In our case, the structure will
also be interesting, exhibiting an irrational power law for the
radial dependence (as known for the scalar field case) and a
mixing of the orbital angular momentum modes.
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Note that gauge field fluctuations in the monopole U(1)
direction are not charged—they do not see the monopole
background (i.e., they can be solved with ¢ = 0). Hence for
these modes we just have to solve Laplace’s equation for
vector fields on R* — Q. As stated above, this is easily done
explicitly in terms of vector spherical harmonics Y/ where
Jjeo,l,..., ke — j,...,jand lef — 1, j, j + 1. The answer for so-
lutions of the form V- =0 is

be{(1/ri+ Yy =/ j=12,.}
e {(1/r+2)yyH=i+1" j=0,,.} (1.1)

as a vector space. The first terms are all tangential to the
sphere at radius r while the second terms are all pure gradi-
ent. Here we intend standard polar coordinates on R* — 0.
This can also be obtained from solving the Laplacian on
S$?=S0(3)/SO(2) by group theory’ and then the radial
equation. For the non-Abelian fluctuations we shall use the
known form of the corresponding { Y2} to carry through the
corresponding more complicated computation. Group theo-
ry is not directly applicable here, but our methods will sug-
gest some elegant underlying structure.

More precisely, let P— (R*> — 0) be the trivial SU(2)
bundle. Among the connections on this let

# = smooth solutions of the Yang—-Mills equations on P.
(1.2)

In this space lies the reducible connection of the
U (1) CSU(2) monopole. Explicitly let U ,U_ be patches
covering the z> 0 and z < 0 halves of R* — 0, then

g+—(¢) = e2'Q¢’ A(] = - lQ ADirac’
Apiey = + EXP/r(1 £1+3),
Q =g0./2eSU(2), g€Z/2,

in an explicit gauge where 3+ A, = 0. Here it should be
pointed out that any SU(2) bundle over R® — 0 is bundle
equivalent to the trivial cross-product bundle and 9 denotes
the flat connection in these cross-product coordinates on
SU(2) X (R* — 0). [However, the bundle reduced to an
SO(3) or (as above) a U(1) subgroup need not be trivial as
7(SO(3)) =Z,and 7 (U (1)) = Z. Thus the transition func-
tions in (1.3) cannot be transformed to the identity by
SU(2) gauge transformations that map the U(1) onto it-
self.} It is also convenient to take the flat metricon R* — Oin
these coordinates.

(1.3)
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In this paper then we compute

TA\ ANZ, , (1.4)
where X, is the gauge-fixing slice defined by DAq-SA =0,
2., = {8Ael(ad P® T*(R*—0)) s.t. D, -dA = 0},

where D, is the covariant derivative. Since A is a reducible
connection, the usual theorem® that this is locally a good
slice, 1.e., that there exists an open & TSE. [A,] in &/ 5
such that

m 2, N7 a0, )= O 1a,

is a bijection, need not be true. Indeed, we shali find in Sec.
III that half of our solutions are “Gribov copies” (we call
them type II) that liein £ A, but are gauge transforms of A

The holonomy group of the connection A, is “broken
downtoU(1).” (Ina physical settingsuchan A canarise as
the approximate connection outside of a non-Abelian core,
here modeled by {0}, due to the presence of a Higgs field ¢
obeying D, ® =0.° The A, themselves do not have finite
action due to the singularity at 0.) Now, because A, is reduc-
ible, the adjoint bundle ad P also splits so that A may be
decomposed as fluctuations ¢ in the U(1) Abelian direction
in SU(2) and non-Abelian fluctuations W in the orthogonal
noncommuting directions. Explicitly in the coordinates of

(1'3)!

With this decomposition in mind, we find the (physical)
type I solutions

Ta #NZ, |y
j+ 1 jki
_ 21=j—qu bl .
s+ LG+ —q + 174)'

b=( g -
Vi+1) JG+ 1
o — 7

G+’ =@ )+ D@2+ 1)

),j: q.,9 + 1"'-] ’

(1.6)

which are purely tangential to the sphere at radius 7, and
similar pure gauge modes for type II. The commuting direc-
tions ¢ are also described by this by setting g = Qin (1.6), to
recover (1.1).

The monopole vector spherical harmonics {Y/} are
given in detail in Ref. 2 where they were used in another
context (to show that for ¢> | there is an unstable mode—a
solution regular near 0 but unbounded as 7 —> 0 ). [For each
of the solutions of decay 7%, the equations for a(a + 1) that
arise have another solution » ~ ® ~ ! that therefore blows up at
wifa< —1.]

As a check on these results, note that for g =} the
slowest possible decay in this Coulomb gauge for 8A in the
non-Abelian direction in SU(2) is for j = 3. This is because
the j = | mode, in fact, vanishes identically. Hence we find

i
¢~,—(1/2)(1+V15), (1.7)

so that at large r the U(1) A, and ¢ necessarily dominate.
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This is the phenomenon known as magnetic SU(2)-color
antiscreening® whereby the classical Yang-Mills equations
on R*® — Okeep non-Abelian modes “classically confined” to
near the origin. In all explicit exact (as opposed to linearized
fluctuation) solutions of Yang-Mills, the non-Abelian
fields, in fact, decay exponentially, e.g., see Ref. 9.

The present work was motivated by the following ele-
mentary consideration. Consider an Abelian configuration
such as (1.3) viewed as a time-independent connection on
(R* — 0) X R. Suppose at # =07 that the connection A, is
suddenly perturbed by 8A = Q'Y in some direction
Q'eSU(2), where 1} is real with compact support in the patch
U,, say, in the coordinates of (1.3). Then the energy
& =45 _ 5, d°x|0 X AJ? jumps,

d>3x|ax¥|?

"—B‘

£(0%)=¥%(0) +—1-trQ’2
2 R

1 12
+?MQQ]L

where & (0) and & (0™) are not finite as € +—0 in the present
case (1.3) but their difference is. The second term is the
energy of the U(1) curvature of ¥ and the third term is the
interaction. From this one may conclude from the principle
of virtual work (or by looking at the Yang-Mills equation
explicitly) that as time evolves, non-Abelian fluctuations
about an Abelian background evolving according to the
Yang-Mills equations, tend to align themselves by rotating
in SU(2). Equation (1.6) was obtained from a desire to see
this explicitly—we see that only asymptotically Abelian
configurations are possible in the steady state.

d 3)CIADirac x‘blz’

;_BE

Il. FURTHER PRELIMINARIES

(a) For slightly greater generality in Sec. IV, consider
A, in (1.3) a connection on the R*-time axis, with metric
(+ — — —) and (Aq)0=0. Time-dependent fluctu-
ations 8A are then allowed. For F(A + 8A) to obey the
Yang-Mills equation when A does, we need, with
v =0,1,2,3 (summation convention) and DA =0,

O.8A, +2[F,"8A, ] =1[8A,,D, , 5. dA"]
=0(8A%, 0O, =D’ D=D,.
2.1
For us Fj =0, F/= ( — qu0,/2)( — F"). Making the
decomposition analogous to (1.5), we have, to linear order,
Oatho=0, Ogy=0, Td=0,
Oa, % — 2g[(rX$)/r?] =0,
3%, —V+6=0, 9°%,—-D-$=0,

(2.2)
(2.3)

where « and X denote the usual inner and cross product on
R® given by 8,=(+ + +) and €. For us O,
=(3%?—D-+Dand D =V — 1gA,,.. is the derivative on
fields v, ¥, as sections of a time-independent line bundle.
Here, ¥,,¢,,% decouple and can be treated separately. Since
we are interested in time-independent solutions we shall
henceforth set ¥,=¢,=0. The solution for ¢ is standard,
(1.1). It remains to solve for 1.
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(b) Now under rotations R, we have an SO(3) action

R = e exp(J. Aq) V(R4 'x
Ry 'x

=exp[:8-(S + L) 1,
where the orbital angular momentum generator is
L= —uaXxD—gqr/r,

which obeys [L,,L;] = 1€, L, as desired. Here, — gr/rcan
beinterpreted’ as the orbltal angular momentum of the mon-
opole. The integral is taken over the arc described by R 5 'x,
te{0,1].
Let
Sia; =
act pointwise on all vector fields a,. Then [S,S;]
= — 1€, S, as required. Let J=L+S and [S,L;]
= — 1€, L, (ie,inthepresent formalism Sactson Dandr

as vectors corresponding to the Poincaré group as a semidi-
rect product). Hence

— 1€,

[Jis;] =164 (L —2L —8), = —i€;J,.

This defines the spin and angular momentum operators.
Note that

[JiL;] =0,
[7.D] =0,

[Jrs] =0,

24)
[J2J,]=0.
LetJ?=j(j+ 1),L*=1(I+1),and J,=J, = k on their
simultaneous eigenfunctions.

Lemma 2.1 (cf. Ref. 5): Let 1 be an eigenstate of
J2=j(j+1). Thenfor D+ =0, (2.2) becomes

(8°)y=Hb = ~H,¢+2D("’ )+4 . "’2’, (2.5)
where
H—-_9_ _206 jui+h-¢
J_ _— T —__——-—~
ar:  ror r?

Proof: Note that D* = — H, [cf. H, but I(I+1) in
place of j( j + 1)] and J* = S* + L? 4 2L-S. Now

LSy, = ’Li¢j€yk =1( —1€4,7D,, — qri/r)¢j€qk
={—ql(S*r)/rly—rD ¥ — Y+ D -r},.
With this in mind, (2.2) for ¥ becomes

(a°)2¢ED2¢+2q%5¢
2
S -};2LS+2qS r)lp

—HJ¢+(

= — H2—2(c/r)D -+ (2/r)D(d - ).

We wish to solve (2.5) in the form Ay =0, ¢ = O(1/
r), D+ =0 since we are interested in time-independent
perturbations ¥ that are small compared to A, at sufficiently
large r (i.e., outside the monopole core, here modeled by
{0}). In fact, it will be just as easy to solve for

HY=Dy, v=0(1/r), D-¢=0, (2.6)
for some y. The directly relevant modes are y = 0. Note that
[/,,H]=0.

(¢) In standard polar coordinates, let

v=sinf=1—1u?,

Then the monopole spherical harmonics that we need' are

u = cos 0, 0o« .

Y = 2"'e'(m:tq)¢[ 204+1 (—mii+ m)!]l/z
alm ¢ 47 =N+
X(l_u)(m+q)/2(1+u)(m—q)/2
x4 (L wy e w
du'tm ’

which can be combined with Clebsch-Gordan coefficients
for the tensor product with spin 1 to obtain a complete ortho-
normal set of monopole vector spherical harmonics, Y,
labeled by the eigenvalues of J* =j(j+ 1), L> = I(/+ 1),
and J, = k given simply in a standard Cartesian basis in Ref.
2y

m=1 m' =1
=SS Gk lmstm) Ve,
m= —Im= —1

Heree, , = (X = 1§)/+2 and e, = 2 is the spin operator ei-
genbasis in terms of standard Cartesian coordinates on R,

As a first step we change to a polar coordinate basis for the
tangent space,

sin 6 cos ¢ cos @ cos ¢ —sin ¢
f=|sinfsing |, @=}cosBsing $= cos ¢
cos & —sin @ 0

In this basis (which we adopt) we obtain, after come compu-
tation,

1 qu/—U-l
Yg1=jhl=ﬁ —uYy oy |,
k2 SR
vY, ‘._le"”+u\/7
. 1
Yt =i — _ et — v\/_} , (2.8)
T ESY) 1 - ¥
thjj_,
v(—Yj+,j_le'¢+e_'\)(2j+1)(j+1 Yj+1j+1)—V2(2j+1)quj+lj
L 1 r_—“'_-’—— ATAT v
Y'gl—j+l=‘/§(2.+3)(.+l) u( — q1+11—le +e™ (2j+1)(1+1 q1+11+1)+v 2(21+1)“Yqj+1j
2 J —1
—1Y €= N+ DG DY 0
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Iil. ORBITAL TRANSFORM AND SOLUTIONS

The key step in solving (2.6) will be the “orbital trans-
form” Lemma 3.1. Thus let ¢ denote a section with
J?=j(j+ 1) and J, = k and write

I=j+1 )
V= : YH(60,8) 1, (r,t)=Yk- f,

=j—1

3.1

where we think of fas a vector in the three-dimensional real
vector space, “orbital space” with orthonormal basis
{Y¥, lej—1,j,j+ 1} (jk fixed). It will suffice to work
with the highest weight k = j for the general case is identical
with g jj+—q jk.

Lemma 3.1: For a spherically symmetric U(1) connec-
tion D, (i) 3 vectors a,d such that

2,V angular | Y7jj ___
PeY)=Y, a D Y, =Y,;d,
where

D.¢=i2_a_r2f..‘b+il)angular(0’¢) "l')
reor r

in spherical polar coordinates; (ii) explicitly for connection
A,

q

=( i'-¢ __ 49
2+ G+ D
B (j+1)2—q2)
G+DG+2/’
d=(_(j+1)\ﬁ2—q’, q

VE+D  JU+1)
R EEY )
NeEDIVES))

and

a><d=( q V-q

ViQi+1D JG+1D
_ W=7 )

G+ DI =G+ D@+ D

XVG+DZI=¢

completes an orthogonal basis for the orbital space; and (iii)

with y an arbitrary function of r,

iY,; =Y. .a, D"™Y ., =Y/.(—d),

i (d

D(Y,,x) = Yg-(d—)ﬁa —lrd).

Proof: (i) There must exist such orbital vectors a,d be-
cause D and f are spherically symmetric and therefore com-
mute with J as explained in Sec. II(b). Therefore the left-
hand sides, which are SO(3) scalars, must have each
component proportional to ¥ ;.

(ii) The coefficients ¢ may be found by manipulating
the top entries in Eqs.(2.8) using the identities among the
{7, } from their definition in Sec. II (b). The identities
needed are spelled out in the Appendix. Next, let
a = (a,,a,,a;) be as in Lemma 3.1. Note a> = 1. A similar
and rather tedious direct computation (see the Appendix)
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gives
—whVi = (a, +ua)Y,;, BV =(ua, +a)¥,;

where
1) q ( 1 1)
a, =\a,8,8; ——|, a, =——|{0—,——},
1L ( 1é2,43 a5 L J+1 a, a5
. » 1 2
012=auz=]__—‘—(.j+ )2+q2’
(j+1D°—¢q
. (2j+1)q g=0=4q.. -
a, au=————(j+l)2_q2, a,a=0=aq,, a.

This then yields, after further direct computation (see the
Appendix),

d=ga, — (j+ Day =(— (j+ Day, — a, ja,),

d’=j(j+1)—¢* ad=0,

a,d=—gq, a,d= —j
so that (a,d,ga,, — ja, ) constitute an orthogonal basis. One
may compute that

qa,, —ja, _ axd

Vi-¢ JU+D'-¢

(iii) From Ref. 1, acting on Y, one has

D, = ;czq(lrFu)+ai¢=z(jiq):th+tq=t(j+q),

D,=34 =—V1—u2—c—?—
[} [ au
u i+q 1F
Ji—u* 9¢ 1+u

=e "L, + (1/v)(q +ju),

&

=e (L, +1L,) —

so that from part (ii) we find

0
Dansvler Yqji — % g+ ju Y“, = _ Y,z' angular | d,
1(j+ qu)
while
1
i, e = 0]7, a4
0

has zero angular part. Therefore its orbital coefficients are
perpendicular toa, andtoa,, and thus are proportional to a.
Since a-a = 1 we see from part (i) that they are just a. Put-
ting these together we have

dr
XL o+ ) You
r v \t(j+ qu)

D(Y,; x) =

) d X )
=Yla—y—-4d).
¢ ( er r

This completes the sketch of the computations leading to
Lemma 3.1.
Using this lemma the equation to be solved, (2.6), for f
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according to (3.1) and ¥,=0, is

a2 29 7 a
_ a()2 v _____) 4= g
( ( )+6r2+rc7r r2f+ rzaf
=(ai_i)(x_2fl) (3.2)
dr r r

and the divergence constraint is
1d _, 1

——rfa+—df=0.

Fidr fat r s
We employ the notation

JG+D—g=T=j"(j'+ 1),
say, and we solve the equation — (3°) = Dy(t,r,6,¢) for
some y(4r0,¢) that must be of the form
x(ro.¢) =x(tr)Y, ;(6,4) since H in (2.6) commutes
with J;. In the time-independent case that we consider first,
the equation is homogeneous in r so it is convenient to write
far) =fnre, x@ar) =y@re~!, a=a(a+1).
Then
(@ —Df+4faa=((a— a—d)(y—2fa), (3.3)
(a+2)fa+fd=0, (3.4)

which can now be solved by elementary linear algebra. Thus,
contracting (3.3) with ¢ and with d and then cross-multiply-
ing we have, respectively,

(@—J+4)fa=(a—1)(y—2fa)

&(@a—Dy=(a+1-Dfaq (3.5)
@—-nfd= -y —2 a), (3.6)
(x—2fa)@—T+H (=D

+(@-2)@—Jn)=0, (3.7)

so that we classify the solutions as follows.

For type I [(y — 2f*a) = 0], if f-a#0 (3.5) implies
& —J +4=0s0 (3.6) implies f*d = 0. In this case (3.4)
implies @ = — 2. The solution is therefore

f=/1a, a=———2, X:u’ ]:6’
which will be included among type III below.

I~ff~a = O then (3.4) implies f*d = 0, and (3.3) implies
@ — J=0and from Lemma 3.1 (ii) we have the solution of
type I:

f=A(qay, —ja))\f*— ¢ = 2b,

x=0 a=—4{—GFD-¢+]=—-j -1,
(3.9

(3.8)

i=ag9+ 1.,
where only the — ve roots of @ = J are given in accordance
with our decaying boundary conditions. Note that the j = ¢
mode exists only for j> } as Y/¥'is defined to be zero for / < 0.
For types II and II1I,

@-J+4)(-D+@-2)@-7n
=0a=T+1+Va7+1
=J'(J'+D £ (@2'+D. (3.10)
Here f-a#0 since f*a =0 implies f*'d =0 by (3.4);
hencef = Oby (3.3) as@ — J #0for (3.10). Therefore (3.5)

1154 J. Math. Phys., Vol. 30, No. 5, May 1989

implies @#1 and thus by writing y — 2f'a = A(& — J),
(3.4) gives a solution proportional to (3.8) againifa = 2 or
else

f= —dd+A—Lq
at
(a-?l—fl).'l .
i larl=NJ
Y= D@t 17

with @ as in (3.10). The choice of the minus sign in (3.10)
gives @ + 1 = J, which we call solutions of type II:

f=—-Ad+A(a+1)a, y=0,

a=—j'—2, j=qg9+ 1.,
where only the — ve roots of & ¥ 1 =J are taken in accor-
dance with our chosen decaying boundary conditions.

For type III, these are the remaining solutions corre-

sponding to the + ve root in (3.10), which, in fact, include
(3.8) by rescaling A:

f= — Ala +2)d + AJa,
y=Al(a+1-NJ/(a-1)], (3.12)

a=—}—JU'+ DG '+2) -3, i=q9+1,...

The physical significance of these three types of solution
to (2.6) is as follows. Type I, being orthogonal to a and 4, is,
by Lemma 3.1, tangential to the sphere at radius 7 and not of
the form Dy. These type I are the physical non-Abelian fluc-
tuations about A . Type II are precisely the solutions of the
form Dy since, according to Lemma 3.1 (iii),

DAY, =Yl (—d+ (a+ Da),

i.e., tangent to the action of time-independent gauge trans-
formations of the form — iyo, /2 —1y*c_/2 correspond-
ing to (1.5). They correspond to the infinitesimal “Gribov
ambiguity” expected at the reducible connection A . Here
only ycr*™ ‘Yq ; needed to be considered as [J;,D;] =0,
see (2.4). Explicitly,

_d+(a+1)a=(\ﬁ"—q’(j-j'>’ —j'q_

V@+h G+ D

(j+j’+1)\/(j+1)’—q’)'
VG+D@+ D

Finally, the type III solutions are the non-Abelian
modes that preserve the Yang-Mills equation only up to a
gauge transform,

D._,sa F(A, +8A) =D, y.

They do not correspond to anything physical but rather to
points that are critical points of the Yang—Mills action re-
stricted to = Ay since any fluctuations, 8A’, that lie on 2 Ay
are restricted to obey D+ 8A’ = 0. Hence they give zero
change in the action at configurations A, + 8A that only
obey the Yang~Mills equations up to a gauge transform (as-
suming integration by parts.) Rather, these modes corre-
spond to an ambiguity in a coupled source J when, in the
background field method,'® a functional Legendre trans-
form exchanges J for A as the fundamental variable. They
are therefore somewhat dual to the infinitesimal “Gribov
ambiguity” modes of type II, and it is interesting that they

(3.11)
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arise precisely as the opposite root of the indicial equation
(3.10) to type I1.
The g = 0 limit of the type I solution is

Y=Y (O, j/(j+D,0)r =" j>0,
and of type 11,

Y=Y (0,0J(j+ D@+ D)r /7% j>0. (3.14)

Here the j = 0 mode is the solution £/ ? familiar in a differ-
ent context.

Since [J,,H ] =0 from Sec. II(b), we have without
computation that all the lower weight modes are obtained
from the highest weights given above by applying
J_ =J, —J, and hence are obtained from the above simply
by replacing ¥, ; and Y/ by Y, , and Y/, respectively, where
ke — j,..., j. Lemma 3.1 also holds in this greater generality
(with the same vectors a,b,d) in view of (2.4).

(3.13)

IV. ALTERNATIVE SOLUTION OF LINEARIZED YANG-
MILLS FLUCTUATIONS: CONCLUSIONS

As an independent check of the computations of Sec. 11
and the Appendix, we shall give an alternative less explicit
solution of (2.6) for y = 0 and indicate that it agrees with
the above. It is modeled on the standard treatment of the
q = O case (Ref. 3, Sec. 16) made possible by the following
lemma.

Lemma 4.1: (i) Let A be a connection on a principle
bundle P and D its associated covariant derivative and [0,
= D-D. Suppose that A obeys the Yang-Mills equations.
For all smooth sections y of ad P we have

(O, + 2F)Dy = D(0, ¥), (4.1)

where F denotes the curvature acting by matrix multiplica-
tion with commutator in the Lie-algebra values (the adjoint
representation).

(ii) For the A, of (1.3) or more generally in » = 3 di-
mensions if D+ F=0 and x'e;, F, /=0 (related to rota-
tional invariance) we have (with O, denoting D - D),

(04 +2F) - (rxXD)y=rxXD(,x), Vy. (4.2)

(iii) Because of parts (i) and (ii), if y is an eigenvector
of O, then Dy and r X Dy are eigenvectors of (0, + 2F [the
operator in (2.2)]. The zero modes obey

D:(Dy)=0,y=0, D:-(rxXDy)= —rBy=0,
(4.3)

provided r + B=x'le;, F/* = 0 as is the case for A,.

Proof: We have
(0,6, + 2F,)D.x

=D"D, D,y + [2F,".D.x]

=D"[{F,,x]+D"D, D,y + 2[Fp YD x ]

=D, 0,y + [F..D.x] + DY[F,..x] +2[F,".D,x]

=D,O,x + [D'F.x]-

Similarly for part (ii), and not explicitly writing the commuta-
tors of the adjoint representation acting on y,
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(a6, + Ffj)ejklka’
= D.Riklka ! + ZF»mé'mk,kal

=D"(€,,D"' + €4 x"F,")
+ D", ,x*D'D, + 2F,"¢, .,;x*D'
= (rXD),04 + €4x"(D-F) + 2x*€; ,F,'D".

Note that 0, + 2F does not commute in this sense with
the orbital angular momentum L defined in Sec. 1I(b), except
for g = 0.

Now the spectrum of (1, on scalar sections y was found
long ago. The results stated in Ref. 1 for the zero modes on
R?® —Qare

x=r—""Y,

qjky
where
U =j+ 1) — ¢, j'>0.

Hence, according to Lemma 4.1, the general solution to {2.6)
with y =0is

YelrxDr=/" =Y Yo {Dr—7"~'Y, . }.

Comparing this with the results of Sec. III we see that we can
conclude as an addendum to Lemma 3.1 that

rXDY, ;<Y - (aXd).

One may perform some explicit computations to fix
the constants of proportionality and check the inverse
(rXD)-¥Y < Y, ;(aXd), but this is to be expected in view of
parts (i) and (ii) of Lemma 3.1.

The time-dependent solutions, i.e., writing ¢ = ¢"¥(r),
the positive eigenvalue modes of [, + 2F, are obtained simply
by replacing  ~/' ~ ' by suitable combinations of spherical Bes-
sel and Neumann functions. For example, j;. (wr)Alwt in the
type I solutions. This and an analysis of scattering can proceed
almost in analogy with the ¢ = O case (Ref. 3, Sec. 16), but
shifted by an irrational amount by using; ’ in place of j. Thisis a
topic of further work.

V. CONCLUSIONS

It is concluded that the solution of the SU(2) Yang-Mills
equation on R* — 0, and other differential equations on sec-
tions associated to the monopole bundle, can be developed
along the lines of the familiar ¢ = O case, with some essential
differences due to the effective angular momentum ;' being
irrationally shifted from the total angular momentum j (as in
the scalar case) and due to the associated orbital angular mo-
mentum mixing. In addition to scalar and vector monopole
spherical harmonics, spin-4 sections have also been of interest,
e.g., Ref. 11, and further work might include explicit partial
waves for this situation also.

The explicit Lemmas 3.1 and 4.1 are intended as a usetul
explicit complement to the alternative highly abstract ap-
proach to monopole dynamics. The important point is that for
charged fields in background (external) fields, there is, in gen-
eral, no Poincaré group. But when the background field has
symmetry under a subgroup, then that subgroup can usefully
be applied in analogy with the uncharged case.
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APPENDIX: ADDITIONAL COMPUTATIONS FOR SEC. lli

(a) Since we know from (2.4) that f - Y/, vf - Y4, and vh - Y are of the form Y ; a, etc., we have to use identities among the
{Y, ;i } to put the scalar coordinate expressions (3.1) explicitly into this form. A general expression for the needed identities is given
in the Appendix of Ref. 2. Rather than develop an abstract theory, it is perhaps simplest for our limited purpose just to list the
needed identities for the convenience of reference while checking the answer. Thus

qui—l/’—l = _‘1- Yqj—lj~1 +",]—_'1 Yqji—l’
J AN+ 1
_ve1¢Y v O —4q

qj‘]j_1=j\/2_]-'—i Y,
iy  AWGEIO=¢
9= a4 - , i+
JU+ 1 Vi+3(j+ 1)
Z+2+ D’ -¢
"WMYqﬁ:JJ - - .) g Yoivrjsn
VY +3j+ 1)
JG+DI=¢
4y (NUFD —g

® —_
—ve Yqﬁ-l -

uY .= — N o
“ j+1 % 3G+ 1D aj+ Y
ey, g PIEL _y FNGFNGED -4, VGV =@,
J+ - : ; + "y "
) G+DG+2) Y DA NT+sG+y Y Frwmasi+n @
“ve_'éyqj+lj+l=q‘__*‘/‘2f——“ Y.y — T/?v(j-'!—Z)—‘q Yqj+zj+\/2 (‘j-{—l) —q Y,
J+10G+2) VU + W +5(+2) TR
— j ; ; 2 ‘/"—"—T‘:_z
”Yqj+1j=—.‘—‘q—1._Yqj+u+\/21+m‘/(1+2) g Yqj+2j+_(_f_+1) q Y,,
(J+1D(j+2) @T %+ 5(j+2) Y430+ 1)
—ve— Y, N+ W2 VIVI(j+2) —g

: =q " - Y Pe -1 : s e
T GEnGE D Y T mr e Y

Using these various identities to find £ - Y from (2.8) is easy. For the other two spatial components of Y7, the computation is
also straightforward so I shall just pause at key steps as an aid in checking:

vé.yﬂ=("‘/ff"f ¢y _ —uY oy NH oy wWl(—g)
4 qru qy
T \vagiry TG+ Y vEfET VIGF GG+ D)
_ Wi+ D—¢ Yﬂ_u\/2j+lx/(j+1)’—qzyu
AW+ 12+3)G+D 7 T FNT S+ 1
uJ2j+1\/(j+1)’—q2Y V2j+1 Y
- — st Yoy |
2+ 30+ 1+ 1) V+Ri+1
where eight similar intercanceling terms have been omitted. Defining a as in the statement of Lemma 3.1, we have
0y (G
GF1 i
W+ D -+l ( Loy 1 ))
- 9\~ N A
(i +3Nj+1 v + 1 (J+1D{+2)
_fnw g J+W+1  w/(j+1)*—g2
={ |\ # s Yqji - 6y
Jj+1 VOU+D =¢ 2+ 1j+1
j 1
=(ua,,uaz-— \/]LbT ,(u+jil)(——;;)+ua3) Y, ;=(ua, +a)¥,

as required in the proof of Lemma 3.1(ii). Similarly

4@ Y — 9i+ 1

0 - Yi =(ua,Y
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— n)&) . Yﬁ —- (L— [g Y J— g Y J'
i

g2+ 1v2

NG+ DI= g

Yqji_ - - . Yqj+1j’
V2i+ WY +30G+ 1

VIW(j+ DI—¢ y

1
Y, 1— )
VI £ 3+ 1 [(j+1)(j+2) SV r 3G+ n Y

VY +1vg I+ VNG D ¢
+‘?—r g+ T , aii
Jj+2) v2i+3

WG DOI=F
=(a'Y‘u‘i’ " v (].+1) ) 4 Yoo+ 22
V+IW2J+30G+1) Jj+2

qij?

WTF1 v, 4+ NG+ D =gy Y“)
G+DU+IWZiF3 7 LG+

=(al,_“z _ (x+‘q )’__.J
J+1 ¥l ji+1 j+1
=(a|,02— \& u, — .q i“'{"13_‘1’) Yq
J+1 jt1a, as
(b) Using the results of part (a) and Ref. 1,

—u—a-=e'¢L++ (g+ju) _ (g+ju)
du v v

acting in Y_;, we find in spherical polars
8 A wi  Wj+qu) 2 o
__é_ve.yg+_f_q_¢.yﬂ

angular Wi __
D YY) = .
u v

a
= ——a;(ua“_ +01)Yqﬂ-—

(g +ju)
1 —u?

=((—ay, +4qa, —ja,)+ o)), ;,

=(_au+

a; — —
J+1 as

i

q (u+q/(j+1)))yl

j=(ua, +a )Y, ;.

(1—u?)(j+qu)(a, +ua)Y,,

(ua,, +a,) — (1 —u®)(j+qu)(a, +ual)) Yo

where the terms labeled O(u) must cancel among themselves in view of (2.4).
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The method of Witten [Phys. Rev. D 19, 718 (1979)] is extended to a double-complex form.
Many new solutions of the self-dual SU(2) gauge fields are generated by the double-inverse
scattering method, and the soliton solutions can form an infinite network.

1. INTRODUCTION

In this paper, the double-complex function and the dou-
ble-inverse scattering method'? are used to generate the new
solutions of the self-dual SU(2) gauge field (SDSGF).? Ac-
cording to Witten,* some static axisymmetric SDSGF equa-
tion can be changed into the Ernst equation.’ In addition,
Letelier® had used the inverse scattering method of Belinsky
and Zakharov’ to find the soliton solutions of the SDSGF.
However, since in these methods only the ordinary complex
numbers (with the imaginary unit /,/Z = — 1) are used, the
double-complex duality symmetry is hidden. If we use this
symmetry, many new and more complex solutions of the
SDSGF are found.

According to Ref. 4, finding a solution of some static
(8 /3x,=0) axisymmetric (about x;) SDSGF on Euclidean
space (x,,X,,%;3,%,) and in the R gauge is changed into find-
ing an ordinary complex Ernst potential &, = ¢ + io,
where both ¢ and o are functions of x,,x, only. Once & _ has
been obtained, then the potential b, of SDSGF is deter-
mined by the equations

¢bx, = (axz’ax|9 - ¢x1) s
¢bx2 = ( - O'XI ’0"2’¢"1) ’

¢bx3 = (0,0}3,0) ) (1)

ob, = (0,0, —4,), 0,=2

" 9x;

In Sec. II, the concept of double-complex duality sym-

metry is introduced. A number of applications are illustrated
in Sec. IIL.

(i=123).

Il. DOUBLE-COMPLEX DUALITY SYMMETRY

Let J denote the double imaginary unit, ie.,
J=i(#= — 1) or J=the hyperbolic imaginary unit ¢
(€= +1, €# + 1). Here a(J) = 3_,a,J " is called a
double-real number, if the real series 2a,, is absolutely con-
vergent. Let & (J) = F(J) + J-Q(J) be a double-complex
Ernst potential, where F(J) = F(r,z;J) and
QJ) = Q(r,z,;J) are double-real functions of r and z, and
(r,2,0) are the cylindrical coordinates

x,=rcosf, x,=rsiné,

i )

r=0+x3 tand = x,/x, .
The double-complex Ernst equation is'?
Re(Z (N)WV*E(J) =VE()VE (), 3

where the symbol Re denotes the real part of a double-com-
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plex function. This equation and its solutions are discussed
in Refs. 1 and 2.

If a double solution & (J) of Eq. (3) is given, then
& . = & (J =) isan ordinary complex Ernst potential. Ac-
cording to Witten,* a solution (#,0) of SDSGF is deter-
mined by & _, i.e.,

(6,0) = (F, ,Q)=(F(J=1),Q(J=1)). (4)
Now, we prove that there is yet another solution (&S,&) of the
SDSGF that is determined by

Eu=Fy+eQu=FJ=¢)+eQJ=¢€)

as follows. Let Tand W, be the Kramer—Neugebauer trans-
formations

ﬂ ¢—-> T(¢) = r¢_l ,
Wy o0 =W,(0) =J‘r"¢2(ax dr—o,dz), (5)
ie, do=r"¢*d,0, dw= —r"'¢’d.0.

Therefore F, = T(Fy) + i Wr,, (Q,,) is! also an ordinary
complex Ernst solution of Eq. (3) with J = i. This means
that we obtain a new solution of SDSGF, i.e.,

(8:8) = (T(Fy),Wr, (Qy)) . (6)

The relations among the solutions of the SDSGF, the dou-
ble-complex Ernst equation, and the stationary axisymmet-
ric gravitation field solutions ( fiw), which correspond to
the line element

ds’ = f(dt — 0 d0)? — f~'[e"(dP + d2*) + P d6?],

o)
can be expressed as in the following configuration:
(L» (LD
(fiw) (F . ,Q};) =———— (¢,0)
(8)
(1) (T,w)

(f0) t—mee— (Fyy ) ————e ($,5) ,

where V= W ~!, 1 is the identity transformation, and the
symbol ( , ) denotes a transformation pair, e.g.,

(19V ): (f;w) _"(l(f):V(w)) = (Fcyﬂc) >
etc. Evidently, the result of Witten only corresponds to the
upper line in Eg. (8). Sigce TT ! = VW = 1, the transfor-
mation from ( ;@) to (4,6) is essentially the same as from

( fiw) to (4,0). In general relativity, we generally select the
asymptotically flat solutions; however, this restriction is not
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necessary for the SDSGF. Thus, in SDSGF theory, the
above method is more effective than those in general relativi-

ty.
ill. APPLICATIONS

In the following, we give some examples of how to find
new solutions of SDSGF.

(A) Let E(J) = (1 + &(N))/(1 — & (J)), thus Eq. (3)
is changed into o
(EE* —1)V?E=2E*VE'VE (* = conjugation) . (9)

When J = i, this equation has the Tomimatsu-Sato® solu-
tion series E. (5)

E.(8) = 28 (5153 .y,
B&n.p.g;8)

where o and B are certain polynomials, p and ¢ are real
parameters such that p*> + ¢ =1, and (£,7) are prolate
spheroidal  coordinates, related  to (r,2) by

r=cJ(EF=1)(1 = %), z = c£n. This solution series has
been extended by us’ to a double solution series E(J,5),
A(&n,C[JA 1S [JA16)
B(£n,ClJALS[JA];8)°
where double-cosine

CUAl= 3 (17200 (J*A)",
n=20

(10)

E(&nd,8) = (11)

double-sine
S[JA]l= z [1/(2n + DI (JT?A)"A,
n=0

p=Clill=cosA,
and

g=S[il]=sind.
The polynomials 4 and B are generated from a and S, re-
spectively, by a simple algebraic substitution

[p.g"ig" = 1= [p,( — D"y (— )"~ >~ '] .
(12)
Frgm E_ (6) the results of Witten are obtained, how-
ever, (4,0) corresponding to E, () are new solutions. For
=1,

E(J) = C[JA)E +J-S[JA]y,

_ 2

b€+ 12 — g p*
IfA = 0, thenp = 1and ¢ = 0, and b,, 'had been calculated in
Ref. 4. In this case, p = 1, § = 0,and the dual gauge potential
b, is defined by o

[ x 1 1
x 0)0’—2—_ (—‘+_)_ 0] s
L e\, o, c0s
[ —Xx 1 1 .
0,0——*1__ (— + —) 6|,
| (=) \r, n, +sin
X = [0,0,0],

~ [ 1 (x +¢  x3—c¢
b 0,0, 3 + =2 )]
[ c(£2—1) 7, r

where r} = (z—¢)* + ;5 = (z+¢)* + 7. It is interest-
ing that the difference between b, and b, is only a periodic
component. . :
Next, Eq. (9) has a double solution
E(J)=e " cothy, V=0,
where a is a real number,

a_ v YA _ :
=Y L =CUAI+ ISR

n=0 M

H

o
it

o
td
Il

M

(14)

o>
Il

(15)

Thus E, is the ordinary Ernst solution,** and from E we
can obtain a new solution

(4,6) = [T(Re(F 1)) Wrerr,, (Im(E )]

(B) The Eq. (3) is invariant under the double transfor-
mation’

K8 () — €' (J) = a(NHNE(J) +J b(J) ’
Jc(NE ) +dW)
where g, b, ¢, and d are double-real parameters and

a(Nd(J) = J*b(J)c(J) = 1.

Here, K(J=1i) is just tl}e Ehlers transformation. By
K(J=-¢€), anew solption (¢',0") of SDSGF can be genera-
ted from a known (¢,5).

(C) In Ref. 2 we have given a double-inverse scattering
method; it can also be used to generate new soliton solutions
of SDSGF. In fact, if (¢, (J/),0,(J)) is a double seed solution
of SDSGF corresponding to a background double Ernst po-
tential € ,(J), and we let

(16)

1 1 oo(J)
Ey = b€+ eqm=£ cosh A + mesinh 4, (13) Mool 70(_15(00(1) 2 (J) — I8} (J))’ an
F,= PE 107 , then according to Ref. 2, we obtain an infinite soliton solu-
_(ﬁé' + 1)?—3%%° ,  tion network as follows:
--———-—’MO_I(J)-_"MOO(J) 7M()](t])
T g g T g g
BZ BZ BZ
e M, ())—— M, (J)—- M, (J)—
(7
T g Ve T g g ’ (18)
BZ BZ BZ
v M, | (J)y——>M(J) My, (y— "
T4 1 T l T g l T
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where BZ denotes the inverse scattering transformation®
from M, (J) to M, _ ,;(J) by an operation of adding one sim-
ple real pole i, , ,. Here, 7 and .7 4 are transformations
from M,;(J) to M; , (J) defined, respectively, as follows. If
M(J) corresponds to & (J) by Eq. (17), then

, , F—-JQ &
TM =M, &=V oy e
(19a)
and
-75(M)=M"s
&4 =T(F.) +e W (Q,), (19b)

Er=T(Fy) +i Ve, (Qy) .

Now, for each M,,, (|m|, n=12,.) we obtain a soliton
solution pair [ (@,msTum )+ (PumsTam ) ] of SDSGF,

¢ =_.___1__.__ o =[1I7,,,,,(J=i)]12
" M T=D1y " M T=D]1

&nm = T([E{nm = 6)]11)9
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Gum = a.m( [ om0 E)]”), (20)
[Mnm (',_ 6)] 11

where [M]; is an element of the matrix M, and
M, .(J)=M,,(J) when n is an even number, but
M, (U==M,(U=¢, M, (U=€6=M, (=i
when # is an odd number. Notice that, from a fixed seed
solution and by the method of Letelier,® we can only obtain a
subset, which, in fact, corresponds to My (J=1i)
My (J=i)-M(J=i)—---.
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Ordered exponentials and differential equations
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An independent and elementary method of guessing the leading form of certain SU(2) and
SU(3) ordered exponentials in the strong-coupling limit of rapidly fluctuating input is
presented. For SU(N), with N> 3, the method is not unambiguous, but it can be used to check

previous estimates.

1. INTRODUCTION

Ordered exponentials (OE’s) satisfying first-order dif-
ferential equations (DE’s) and describing the evolution of a
multicomponent, linear system have a rich structure of solu-
tions that may be estimated in certain adiabatic and rapidly
fluctuating input (RFI) limits of strong coupling.' One
may ask if any part of this structure may be inferred from an
examination of higher-order DE’s written for individual
components of the system, as relevant to the particular input
information of the problem. The purpose of this paper is to
answer this question in the affirmative and to display, in two
simple SU(2) and SU(3) contexts, an independent method
of finding results obtained previously in the RFI limit. In the
course of this analysis, one learns—it was a surprise to the
author—that certain, relatively simple, but important prob-
lems can be solved exactly; these exact solutions can be easily
generalized to produce the desired RFI limits.

Il. THEORY

It will be useful to state the essential problem in a con-
venient SU(N) context of finding an explicit solution to the
first-order DE for the N X N unitary matrix satisfying

dl;i') = i[A XE(D)U(),

(1)

with U(0) = 1. Here the input E, (¢) denote real compo-
nents of an n-dimensional vector, with n.= N2 — 1, and the
A, represent the defining (Gell-Mann) matrices of SU(N).
The solution of (1) is the unitary OE of interest, written in
the standard (physicists’) form as

ui) = [exp(if dt'A xE(t’))] , (2)
0 +

where the ordering symbol ( ), signifies that in the expan-
sion of (2) in powers of E,, those terms carrying the largest
t’ values are to be placed on the left, as in

([A XE]" .
=1 XE(t)A XE(t,) A XE(t,), t,>t> L,

We first consider the simplest case of SU(2). Here, the
A, are the Pauli matrices o, given by

_(0 l) _(0_ —f) _(1 0)
7=\ o 2T o) BT o-1

and we restrict £, to nonzero components in directions or-

*) Permanent address: Physics Department, Brown University, Providence
RI02912.
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thogonal to that direction whose associated ¢, is diagonal
[in general SU(N) to those directions whose A, are diag-
onal]. That is, for SU(2), E,, #0; while using the Gell-
Mann matrices in SU(3), we exclude E, and E,. The reason
for this simplification is that such ‘“diagonal” dependence
may always be removed by an appropriate unitary transfor-
mation on U, leaving the result dependent upon only the
*‘orthogonal” components E, .

We therefore consider

dUu

?= ilomE\(t) + 0,E,()1U(), U0)=1 (3)

and next calculate the equivalent DE that would be satisfied
by the components of the column vector v(?) = (1)),
where v(t) = U(#) Xv(0). The components x(¢) and y(¢)
are complex functions which for real E, satisfy the unitarity

relation

|x(D)? + [p(®)]? + |2(2)|* = const. (4)

Denoting £, = E, — E,, these components satisfy the
pair of first-order equations

x=iyE_, (5)
with E,E_=E? + E} = E” From (5), one may con-
struct the second-order DE

i+ Ex —J'c—d—ln(dE‘)
dt dt
which for general E, , is far too complicated to be solved
exactly by any method.

A general form for E | , may be written as

E (1) = E(t)cos(j dt’ w(t')),
0

y=ixE_,

=0, (6)

: )
E,(1) =E(t)sin(f dt a)(t')),
0

where E(¢) and w(?) represent an alternate pair of arbitrary
functions. The coefficient of — dx/dtin (6) would then be-
come d(In[dE /dt — iwE])/dt — iw(t). If one imagines
passing to the limit of large p = w/E, with variations of p
(or, more precisely, with the appropriate dimensionless var-
iations of @ and/or E) negligible compared to p, then for
sufficiently long time scales (> ™ "), one might expect the
behavior of (6) to be given by solutions of

% + E*x — iox =0, (8)

where E and o are slowly varying; on the time scale > o ™!

they may be taken to be constants. This is analogous to the
special case of constant £ and w used in Refs. 1 and 2, which
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when generalized to slowly varying functions—but always
with p» 1—give the leading RFI approximations for U.

With this as motivation, one may now consider (8) with
the constant coefficients E and w. Of course, it is immediate-
ly soluble in the form

x(2)=A, "'+ A_e O ¢))
with

O =E[ + V1 +p/4 —p/2}
and A, A _ chosen as appropriate constants. Note that 0, /
E is precisely the form previously found for £(p).?

From the pair (5), one can see that a corresponding
solution for y(¢),

y(t)=B,e "'+ B_e°-, (10)

willrequire B, =4, Q,, B_=A4_Q_. Of course, these
constants may be reexpressed in terms of the integration
constants x, = x(0), y, = »(0) of the original first-order
DE’s:

X0 — yo/S2_ — Xo— Yo/,
1_Q./9_"° 1—-Q_/0.°
We now extract the appropriate F,, of the exact
U= F, + ieXF, where the F,, are real functions. Multi-
plying out the matrix product U(z) X v(0) yields the column
vector

([Fo + iF)x + [F + iFl]yZ)
[Fo — iF3)yo — [F, — iF,]x ’
which must be the same as (}¢; ). Using (9)-(11), one ob-
tains a pair of complex equations by matching coefficients of
the independent x,, y,; then one can take real and imaginary

parts of these equations to obtain the four desired relations
for Fy,:

Fo=[Q, cos(Q_t) — Q_cos(2,8)]/(Q, —Q_),

F,=[Q,sin(Q_t) —Q_sin(Q_ 1/(Q, —Q_),

F,=[cos(2_t) —cos(Q_ D)/ (2, —Q_),

F, = [sin(Q,2) —sin(Q_0)1/(Q, —Q_). (13)

Equations (13) are exact and represent the solution for
the special case of constant E and w. In particular, the solu-
tion can be evaluated in the large p limit using

Q_ = — (o + 0, );one finds that it reproduces exactly the
leading forms of the F,,, given previously,"’

F=cos G, E:sinG, 7,=§[sin(G+L)+sinG],
F,=&[cos G—cos(G+ L)}, (14)

where £ = 1/p (just the leading term in the expansionof Q , /
E) and

1 ’ I3
G=f a B =f dt’ o(t’).
o p") o
In writing (14) and (15), we have supposed that the input
dependence on time scales large compared to ™' is ob-
tained by replacing the £ Er and wt of this special solution by

the integral statements of (15).

For sufficiently large p(¢) this seems to be an “experi-
mentally” valid prescription; one can now see its justifica-
tion at a glance from (6) and (8): The replacements

(11)

~+

(12)

(15)
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Q, t-f5dt’ Q, (') will reproduce Eq. (8), in leading 1/
porder, with slowly varying functions £ and «. Here, then, is
another, independent method for estimating U(#) in the RFI
limit: Solve for x(¢), y(t) exactly, in the constant E, » case;
then, with the aid of the independent constants x, and y,,
solve for the F, ,; and, finally, take the limit o> 1 and allow
for the possibility of slow variations in E and w by writing
(15).

Turning to SU(3), one can ask if these same techniques
are applicable. In general, the answer is no, although much
of the SU(3) structure is reproduced. We consider the sim-
plest nontrivial model of Ref. 3, where but two E, compo-
nents were nonzero:

E, =6,E cos(wt) + 6,,E sin(wt)

and first consider E and w as constants. Writing

x(1)
() = y()
z(1)

where U= M, + A, M, is the object of interest, the compo-
nent equations corresponding to those of (5) are found to be

(16)

= U(t) XU(O)’

x=zE; +yE,, y= —xE, 2= —xE,

From (16) it immediately follows that R > = x* 4 y* + 2 is
a constant of the motion; if R(¢ = 0) is real so is R(#), lead-
ing to the inference that x(¢), y(¢), and z(¢) will all be real if
x(0), y(0), and z(0) are real.

To solve this triplet of equations, it is useful to define the
new linear combinations u and w according to Eu(r)
= Ez + E, y and Ew(t) = E,z — Esp. The equations cor-
responding to (16) for the triplet x, , and w are then

w= —owu, x=FEu u=aow-—EXx, (17)

and it is a trivial matter to eliminate any two of these vari-
ables to obtain an equation for one of them along, e.g.,

U4+ Qu=0 P=E?+o% (18)
Because (18) is a second-order DE, it has but two constants
of integration. Once u(¢) is known, a trivial integration {the
first of Eqgs. (17)] yields w(¢), with one new integration
constant; but the remaining pair of Egs. (17) relate that
constant to those two of #(z). In other words, after one has
made the transition to x(¢), y(¢), and z(r), one finds an
explicit solution to (16), but with one relation between the
three constants of integration, which here takes the form of
z(0) = — (w/E)x(0) and independent x(0), y¥(0). For
(w/E) > 1, one finds

x(1) =~x,c0s(2t) + yo(E /Q)sin(2t),

y(t) = — xp(w/E)sin G + y, cos G,

z(t) = — xo(w/E)cos G — y, sin G,
with G = () — w)t~Et/p and p = 2w/E.

Were the three integration constants independent, it
would then be possible in principle to repeat the SU(2) pro-
cedure for SU(3), achieving for the nine complex, indepen-
dent parameters M, of U a total of nine independent rela-

tions; and, upon combining the nine relations with the nine
independent statements of unitarity, to determine unambig-

(19)
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uously the real and imaginary parts of the nine coefficient
functions M, ,. More simply, if the solutions x, y, and z are
nary, so that nine relations would suffice to determine the
nine components.

However, in the present case, with but two independent
constants of integration, we can construct but six indepen-
dent relations, which are insufficient to specify the M. In
the large w/E limit, one will be forced to make certain as-
sumptions; we do this in a way that resembles a part of the
output of Ref. 3: choosing M, ; , and J, 5 as negligible in the
(w/E)> 1 limit, one finds that the remaining four quantities

My=3(1 +2cos G), M;=~L1(1—cos@G),

Jo=sin G, My=(1/2J3)(1 — cos G)
are exactly those obtained previously.® Although one cannot
view this as an independent construction of the leading RF1
behavior in this SU(3) example, one may infer from (20)
that the method used in Ref. 3 is correct, although not unam-
biguous.

(20)

I. SUMMARY

In summary, one sees that by considering second-order
DE’s for vector components, instead of the first-order DE
for the OE of interest, the leading behavior of the RFI can be
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reproduced. More important, this illustrates the close con-
nection between OE approximations at large p and “in-
frared” approximations of second-order DE’s, where the es-
sential part of the approximate solution comes from the
large, low-frequency input dependence, here the — i(w/E)
of E ~'d[In(dE_/dt)]dt. Calculating the solution to the
second-order DE written for constant E and w and then sub-
sequently modifying it for slow variations of these quanti-
ties—as long as p» 1—is a particularly simple way of defin-
ing a ‘“strong coupling by infrared extraction”
approximation, such as those which have been used in a var-
iety of “eikonal” problems elsewhere.* One sees that the rela-
tively low-frequency components of the input £ and o pa-
rameters, treated in a nonperturbative way, define the
leading, relatively low-frequency behavior of the desired so-
Iution for the OE.

'M.-E. Brachet and H. M. Fried, Phys. Lett. A 103, 309 (1984).

>M.-E. Brachet and H. M. Fried, J. Math. Phys. 28, 15 (1987).

*H. M. Fried, J. Math. Phys. 28, 1275 (1987).

“In a quantum field theory context, see F. Guérin and H. M. Fried, Phys.
Ref. D 33, 3039 (1986); H. M. Fried and T. Grandou, ibid. 33, 1151
(1986); T. Grandou, H.-T. Cho, and H. M. Fried, ibid. 37, 946, 960
(1988).
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The general framework of the N = 2 Wess—Zumino holomorphic supersymmetric quantum
mechanics with polynomial superpotentials is extended to the case of nonpolynomial
superpotentials ¥ (z) (zeC) in a mathematically rigorous way. It is also proved that there exist
no fermionic zero-energy states. Under some conditions for ¥, the operator domain of the
supercharges and the supersymmetric Hamiltonian are identified. As an example, the model
with ¥V(z) = Ae™ (AeC\{0}, a > 0) is analyzed in view of index theory. The following
remarkable result is proved: There exist infinitely many bosonic zero-energy states which are
Iocalized in the momentum space dual to the Im z direction. The results are applied to two

models in atomic and nuclear physics.

L. INTRODUCTION

In Ref. 1, Jaffe et al. considered two models of super-
symmetric quantum mechanics (SSQM), which are the
quantum mechanics versions of the two-dimensional, N = 1
and N =2 Wess—Zumino quantum field models; they also
computed the Witten index (=the number of bosonic zero-
energy states minus the number of fermionic zero-energy
states) in each model. In particular, it was proved that in the
N =2 Wess-Zumino SSQM with an arbitrary polynomial
superpotential ¥(z) (zeC), there exist no fermionic zero-
energy states (the “vanishing theorem”) and the Witten in-
dex I y is equal to the number of bosonic zero-energy states,
with

Iy =degV—1. (1.1)

In this paper, we consider the N =2 Wess-Zumino
SSQM with nonpolynomial holomorphic superpotentials
and try to extend the results for the case of the polynomial
potentials considered in Ref. 1. This is at least mathematical-
ly interesting: Formula (1.1) shows that the Witten index is
determined by the order of singularity of the superpotential
atz = oo and suggests formally that the Witten index is infi-
nite in the case of nonpolynomial holomorphic superpoten-
tials, for they have the essential singularity at z = oo. Note,
also, that a nonpolynomial entire function is the limit of a
sequence {V, (z)}_, of polynomials with deg ¥,, = .

In Sec. I, we describe in a mathematically rigorous way
a fundamental framework for the Wess—Zumino holomor-
phic SSQM with not necessarily polynomial superpotentials.
We shall show that some results in Ref. 1 can be extended.
For example, the “vanishing theorem” holds also in the pres-
ent case (Proposition 2.5). In Sec. III, we consider the case
with ¥(z) = Ade** (1eC\{0}, a > 0) and prove by identify-
ing the space of the bosonic zero-energy states exactly that
there exist infinitely many bosonic zero-energy states. Thus
as far as this special model is concerned, the result justifies
the above formal argument. It is noted that every bosonic
zero-energy state is localized in the momentum space dual to
the Im z direction. In Sec. IV, we apply the result in Sec. III
to two models in atomic and nuclear physics: One is a model
of a nonrelativistic spin-} particle in an external SU(2)
gauge field and the other is a model of a nonrelativistic nu-
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cleon in a pion field. These models were discussed in Ref. 1in
order to give physical interpretation to the Wess—Zumino
holomorphic SSQM. In each model, the potential is two-
dimensional and periodic in one direction (e.g., the y direc-
tion). It is shown that each model has infinitely many zero-
energy states which are localized in the momentum space
dual to the y direction.

il. WESS-ZUMINO SSQM WITH GENERAL
HOLOMORPHIC SUPERPOTENTIALS

In this section we recapitulate the definition of the
N =2 Wess—Zumino holomorphic SSQM' (cf., also, Refs. 2
and 3) and extend some mathematical results obtained in the
case of polynomial potentials' to the case of general holo-
morphic potentials.

The Hilbert space 5% of state vectors for the model is
given by

H =L*(R*%CY . (2.1)

In order to define the supercharges, we introduce 4 X 4 ma-
trices ¢, and ¢, by

1 0 I+ o,
¢’:—2—(1—U 0 »)’
: . (2.2)
¢=L( 0 lal—}-az)
T a2\—io,—0, 0 ’

where o;, j = 1,2,3 are the Pauli matrices

0 1 0 —i 1 0
U'z(l 0)’ Uzz(i 01)’ ”3:(0 —1) (23)

and I is the 2X2 identity matrix. The matrices ¥, and ¢,
satisfy the anticommutation relations

{‘ﬁp'pf} = 6jk »
{¢j’¢k} = 0’ J’k = 1’2 3

where {4,B}=AB + BA.
Let V(z) be a holomorphic function on C (not necessar-
ily polynomial) and consider the operators

O, = i(,d + ¥39) + {¢h,(IV) — g (IN)*}, (2.6)
szz//zg—z//fc?—f—t//,(aV) + ¥r@ary*, (2.7}
where d = 3 /dz and d = 8 /dz* [the operators Q; given by

(2.4)
(2.5)
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(2.6) and (2.7) are different from those in Ref. 1]. We shall
use the usual identification of C with R? through the corre-
spondence z = x 4 ipeC«>(x,y)€R? Then Q, and @, can be
considered as operators acting in 5% given by (2.1). We put

D=Cg(R5CY). (2.8)

Proposition 2.1: The operators Q, and (, are essentially
self-adjoint on D. Further, every power of Q, (respectively,
(,) is essentially self-adjoint on D.

Remark: In the case of polynomial potentials ¥, Propo-
sition 2.1 was proved for Q, and Q3 (Ref. 1).

Proof: It is obvious that Q; is symmetric on D. We write

it as
Q= —iL
on D, where
d d
1 5 Zay Y

with

4= =¥ +¥3), 4=/ -,
B(x,y) = ¢V (2))* — ¥, IV(2) .

The operator L is of the form of the first-order differential
operators considered in Ref. 4 because 4;;j = 1,2; and B are
C>* 4X4 matrix-valued functions. Note that 4, and 4, are
constant matrices. Hence the “velocity of propagation”
(Ref. 4) associated to L is constant. Then a direct applica-
tion of Ref. 4, Theorem 2.2 gives the desired result on Q,.
The proof for the case of Q, is quite similar. O

Remark: Note that {4,,4,} = 6,72, j,k = 1,2. Hence
@, is a Dirac-type operator. The same holds for Q,.

We shall denote the closure of Q; | D by Q.. Then we
have the following lemma.

Lemma 2.2:
01=0;. (2.9)
Proof: Direct computations give
QIV=03¥
for all ¥ in D. Then, Proposition 2.1 implies (2.9). O
We define the non-negative self-adjoint operator H by
H=0}=02. (2.10)
Then we have
H'?=10/|=10, (2.11)
and hence, in particular,
D(Q) =D(Q,) =D(H'?), (2.12)

where D(A) denotes the operator domain of operator 4.
Lemma 2.3: Each Q; maps Dintoitself and the anticom-
mutation relation

{QI’Q2}\1’ =0, YeD (2.13)
holds. Further, we have
(Q\¥,0,®) + (Q,¥,0,) =0, D,WeD(H'?). (2.14)

Proof: Equation (2.13) follows from direct computa-
tions. By a limiting argument using Proposition 2.1, one can
extend (2.13) in the form of (2.14). ]
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N_(I 0)
F7\W0 -1/

Lemma2.4: Foreachj = 1,2, N maps D(Q ) intoitself
and the anticommutation relations

{Ne, Q¥ =0, WeD(Q), j=12
hold.

Proaf: We first prove (2.16) for ¥ in D. Then, a limiting
argument using Proposition 2.1 gives the desired result. O

The Hilbert space # given by (2.1) has the following
orthogonal decomposition:

(2.15)

(2.16)

K=, e _, (2.17)
with
r(fl h
H =4 {; | fi LELX(R?) ¢, (2.18)
LKO -
/0 1
0
H_ =4 P | fu LEL X (R?) ¢ . (2.19)
1
-\/‘2 o
Obviously, we have
NeW, =1V, V¥V, &7, . (2.20)

In summary, we have proved that the quadruple
{#°{0,,0,},H,N . } is a SSQT with N=2 supersymmetry in
the sense of Ref. 5 (cf., also, Ref. 6); the operators @, and @2
are the self-adjoint supercharges, H is the supersymmetric
Hamiltonian, and N is the fermion number operator. The
closed subspace %, (respectively, 5¥°_) is the Hilbert
space consisting of bosonic (respectively, fermionic) states.

On the domain D, H is explicitly given as

H= — 93 — *,(3*V)* — 424, 32V + 13V 2. (2.21)

By a general fact of a SSQT, H is reduced by #°, ; we shall
denote the reduced part of H to 7, by H, . We have

_ 0 — z‘(an))
H, =H_ +(i(an)* 0 (2.22)
and
— 1 0
H_=(—-3d0+ ]8V|2)(0 1) (2.23)

on D, where we identify #°, with L*(R%C?).

We now proceed to the index problem. The Witten in-
dex Iy is defined by the number of bosonic zero-energy
states minus the number of fermionic zero-energy states>:

IW = n+ —n_ ) (224)
with
n, =dimKer H, . (2.25)

By Lemma 2.4 and (2.20), for eachj = 1,2 there exists a
unique closed linear operator Q; , :#°, -2 _ such that

5-(0 o)
= ) 2.26
9 (QH 0 (2.20)
It follows from (2.10) that
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H+=Qf+ Qj+’ H_ZQI'+ Q;—k+, j=1,2, (227)
which imply that

n, =dimKerQ,,, n_=dimKerQ¥ , j=12.

(2.28)
Hence we obtain
Iy, =dimKer Q;, —dimKer QF,
=index Q;, , j=12. (2.29)

Remark: The arguments leading to (2.26)-(2.29) ap-
ply to every SSQT and the results are well known.

Proposition 2.5 (Vanishing theorem ): There exist no fer-
mionic zero-energy states:

n_=0. (2.30)

Remark: This result of (2.30) has been established in
the case where V(z) is a polynomial (Ref. 1, Proposition 6).
In the case where FV is not necessarily a polynomial, it may
happen that H_ is not closed on D(dd)ND(|dV |?) and
hence that H_Q = 0 is not equivalent to — 3 dQ =0 and
|dV |2Q = 0, as in the case of polynomial potentials V.

Proof: The operator k= — 33 + |9V |? is a two-dimen-
sional Schrddinger operator with a non-negative potential.
By Proposition 2.1, C(R?) is a core for A. Thus we can
apply Lemma A1 in the Appendix to obtain the desired re-
sult. O

We next consider conditions for a vector to be in Ker
H, =Ker@Q;, [see (2.25), (2.27), and (2.28)].

Formulas (2.28) and (2.29) show that as far as the in-
dex problem is concerned, it is sufficient to consider one of
Q, j = 1,2. Henceforth we write

Q———-Ql’ 0.=0 . . (2.31)

Lemma 2.6: Suppose that D(Q_ ) = D(d)ND(|dV}).
Then the following hold.

(i) Every vector ( f,g) in Ker @, satisfies

(=83 + V) f+ (@@~ df=0, (2.32)

(—39+ |9V |H)g+ (3 M*@M*'dg=0 (2.33)

in the generalized sense.

(ii) Let feL 2(R?) be a vector satisfying (2.32) in the
generalized sense. Then ( f,g) isin Ker @, ifand only if f is
in D(3)ND(|aV|) and (V) ' dfis in L*(R?), with

g=i(dn~"4f. (2.34)

(iii) Let geL *(R?) be a vector satisfying (2.33) in the
generalized sense. Then ( f,g) isin Ker @ ifand only if g is
in D(8)ND(|dV]) and (IV)*~' dgisin L *(R?), with

f= —i(@Vy*~'3dg. (2.35)

Remark: Lemma 2.6 is an elaborate and extended ver-
sion of Ref. 1, Lemma 8.

Proof: (i) By (2.2), (2.3), (2.6), and the assumption
D(Q.)=D(d)ND(|aV|), we have

_(—ian* 3 )

Qs “( 3 iav.

on D(Q_ ). Hence every vector ( f,g) is in Ker @, if and

only if ( £,g) is in D(Q, ) and satisfies
g —i(dNM*=0

(2.36)

(2.37)
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and
I +i(dV)g=0. (2.38)

Equation (2.37) and the condition feD(d) imply that 3 dg
exists as an L | . function with

loc
3 g — (V) — i(AV)*9f=0.
It follows from (2.37) and (2.38) that

f= —i(@N)* ' 3¢, = —i(dNg.
Substituting these relations into (2.39), we obtain (2.33).
Similarly, using (2.38), we can show that (2.32) holds.

(ii) The part “only if ”’ is obvious by (2.38). To prove
the part “if,” we first note that (2.34) gives (2.38). Hence it
follows that (dF)gisin L*(R?) [i.e., geD(JV)] and

A +i(3*V)g+i(3V)dg=0. (2.40)

Using (2.32) and (2.38) to rewrite (2.40), we obtain (2.37).
In particular, we have geD(d). Thus we have proved that
(f.g) isin D(3)ND(|dV|) and satisfies (2.37) and (2.38).
Therefore ( f,g) isin Ker @, .

(iii) Similar to the proof of (ii). O

Finally, we consider conditions under which the as-
sumption D(Q, ) = D(3d)ND(3V) in Lemma 2.6 holds.

Lemma 2.7: Suppose that there exists a constant 7> 0
such that for all zeC satisfying |d >V (2)|>7, the estimate

102V (z)|><aldV(2)[* + b (2.41)
holds with t}ie constants O<a<1 and b>0. Then
D(H_) = D(33)ND(|dV|*) and (2.23) holds as an opera-
tor equality.

Proof: Let f bein C & (R%C?). Then we have

IH_ fI? =19 IP + 1M

—2Re(3 |9V *f) .
Via integration by parts, one can see that

2Re(33f|3V |*F) = ||[(3* W)
— @ Y@M = 1@ YEN .

(2.39)

Hence we obtain

IH_ FIP=N9 1 + @I — 1@ Wf].
Using (2.41), we can show that

1(3°VfIP<all @V |12 + (P + B fII? .

Therefore, we obtain the estimate

163> + (1 — a) BV FIP<IH _fI* + (P + B fII? -
(2.42)

Since C & (R?%C?) is a core for H_ (Proposition 2.1), (2.42)
extends to all l in D(H_), showing at the same time that
D(H_)CD(3d)ND(|dV |*). Since H_ is self-adjoint, we
conclude that D(H_) = D(33)ND(|aV|?) and H_
= —dd+ |aV |~ a

Remark: In the case of polynomial potentials V, it is
easy to see that (2.41) holds, where a can be made arbitrarily
small if 7 is taken sufficiently large.

Lemma 2.8: Suppose that there exists 7> 0 such that
(2.41) __holds with O0<a<] and b5>0. Then D(H,)
= D(33)ND(|dV |*) and (2.22) holds as an operator equa-
lity.

Proof: Let
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0 — i(an)>
H, =
! (i(an)* 0
and f be in D(H_). Then by Lemma 2.7 and the above
assumption, we have D(H_) CD(H;) and

|H A IP<al @17 + (7 + )| fI-
Using (2.42) extended to feD(H_), we obtain

P + 2Ly,

Since 0 <a <, we have 0 <a/(1 — a) < 1. Therefore, by a
standard theorem (the Kato—Rellich theorem) (see, e.g.,
Ref. 7, Chap. V, Theorem 4.3 and Ref. 8, Theorem X.12),
H, =H_ + H, [see (2.22)] is self-adjoint on D(H_). O

Remark: Polynomial potentials V satisfy the assump-
tion of Lemma 2.8.

Lemma 2.9: Under the same assumption as in Lemma
2.8, we have D(Q_ ) = D(3)ND(3V).

Proof: By Lemma 2.8 and its proof, the operators dd and
|aV |? are relatively bounded with respect to H_, and hence,
by a standard theorem (see e.g., Ref. 7, Chap. VI, Theorem
1.38 and Ref. 8, Theorem X.18), relatively form bounded
with respect to H . Therefore, in particular, it follows that
D(3)ND3V)DD(H'{*) = D(Q,). Define the operators

L. =(—z(_c_?V)* .8 )

d iav,

and
14 e
()
—3d —i(an*
on D(A)ND(IV). Then the above result shows that
Q.CL,
Obviously, the operator

0 L,)
L=
L. %

is a symmetric extension of Q | D. Hence we obtain Q = L
since@= Q [ D is self-adjoint. On the other hand, we have

ZZG’ L—).

By the uniqueness of Q,, we obtain Q, = L, and o*
=L _. Hence, by (2.43), wehave O, =L = L . There-
fore, L, is closed on D(J)YND(dV) and equal toQ,. O

(2.43)

lil. THE MODEL WITH A SUPERPOTENTIAL OF THE
EXPONENTIAL TYPE

In this section, we consider the model with the potential
V(z) = Ae*, zeC, (3.1)
where AeC\ {0} and @ > 0. Then H , takes the form

0 . az
H ———(9(9-}—‘/”2 22(1Rez+ia2(i*a‘ Ae)
Cad 0
(3.2)
on D [see (2.22)], for we have
IV (z) = Aae™, 3*V(z) = la’e™. (3.3)

For a measufable function u on [0,2], we define the
functions f, and £, on R? by
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2a
fu(xy) = J u(p)e™ W 1 _ /o (44 €)™ dp
0
(34)

9 i)f,xx,y) . (3.5)
ay

- i .
u (X.9) =——e“"‘”’y’(—+z
fuloy 2Aa ox

provided that the right-hand sides are meaningful, where
W, . () is the Whittaker function (see e.g., Ref. 9, Chap.
XVI). Let

D, = {ueL*(R)|supp uC (0,a/2)U(a/2,a)} .

We shall prove the following proposition.

Proposition 3.1: Let H be given by (3.2). Then every
vector in Ker H, is of the form ( £, L) or ((£.)*%, f%), with
some u satisfying the condition supp ¥ C [0,a] and

Ker H, D{(£,, /) [ueD, JUU(F)* f1)lueD, } . (3.7)
In particular, H | has infinitely many zero-energy states:

(3.8)

Remarks: (1) The above result shows that in the present
model, supersymmetry is unbroken with infinitely degener-
ate vacua.

(ii) It should be noticed that the Fourier transform
f,, (x,p) [respectively, £, (x,p)] of f,(x,y) [respectively,
£, (x,») ] with respect to y has compact support in peR. This
means physically that every zero-energy state of H , is strict-
ly localized in the momentum space dual to the y direction.

(iii) Let

N
Vy(z) =4 z
n=0

and let Q™ and H ‘Y be Q and H, with V= V), respec-
tively. Then by Ref. 1, Proposition 9 [see (1.1)], we have
n, (N)=dim Ker @V = dim Ker H ' = N— 1. On the
other hand, it is easy to see that Q ‘™ and H ‘" converge Q
and H_ in the strong resolvent sense as N— «. Formula
(3.8) may be regarded as n, = o0 = lim,_ _ n, (N).

(iv) The corresponding model in the N = 1 Wess—Zu-
mino SSQM (the Witten model??) is given by the Hamilto-
nian

(3.6)

n,=cw.

(az)"

H 0 d? ax ax
H=(0+ H_), Hi=——2—-+1222 +iae

where a, AR\ {0}. This model was discussed in Ref. 10 and
it can be shown that Ker H, = {0}."' This result also

shows an essential difference betweenthe N=1and N =2
Wess~Zumino SSQM’s.

Lemma 3.2: For all r>0 and all zeC with |32V (2) |>r,
the estimate

|32V(2)|<(a?/r)|aV(2)]? (3.9)
holds.
Proof: An elementary exercise. O

Lemma 3.3: The operator H, is self-adjoint on
D(33)ND(|aV|*) and D(Q,) = D(d)ND(IV).

Proof: By taking r sufficiently large in (3.9), the as-
sumption of Lemma 2.8 is satisfied. Thus Lemmas 2.8 and
2.9 give the desired results. O

The following lemma is derived from Lemma 2.6 (i)
and (3.3).
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Lemma 3.4: Every vector ( f,g) in Ker Q0 satisfies
2 2
ox: I ox

+ 21a§-—|— 4|1 |*a? 2""‘)f(x,y) =0 (3.10)
y
a2 (72 a
_ 20 -2
( w a
—21aai—+—4|/1 |*a® 2""‘)g(x,y) =0 (3.11)

where we put z = x + iy.
Lemma 3.5: LetaeR, b > 0, ¢ > 0, and E€C be constants.
(i) If Re E<O, then

d .
" 7 ce’” )f(x) = Ef(x)

has no solutions f#0 with feD(d?/dx*)ND(e*™)
CL*(R).
(it) Suppose that

0<|Reya*—E|<a, ReE>0

and 2Ja® — E /b is not an integer.
Then every nonzero solution feL ?(R) to Eq. (3.12) is
given by

f(x) =Ke“ =W o (2™ /b) (3.13)

with a constant KeC\ {0}, where W, ,,, (z) is the Whittaker
function (see e.g., Ref. 9, Chap. XVI).

Proof: (i) Via the elliptic regularity, every solution f to
Eq. (3.12)isC* . Let feD(d */dx*) N\ D(e*** ) be anonzero
solution to Eq. (3.12). Taking the inner product of f with
(3.12) in L 2(R), we obtain

£ +2aCf, f) + clle”fII? = E| f1I*.
Since ( f',f) is pure imaginary, it follows that Re E> 0.
Thus the desired result follows.

(ii) Let feL *(R) be a nonzero solution to Eq. (3.12)
and define

(3.12)

v(t) =622 £(1/2blog(b?t?/4c)), t>0. (3.14)
Then we have

Wik =%J £20 D) 2 di < oo (3.15)

(0]

and v satisfies the Whittaker equation
d? [ 1 l—(az—E)/bz}
—u(t —_ 42 v(t) =0 3.16
7 v(t) + 1 pp (1) ( )
Since 2\/a> — E /b is not an integer by assumption, the con-
fluent hypergeometric functions M, .— ,(#) and
MO_ T Esb (2) (see, e.g., Ref. 9, Chap. XVI) form a funda-

mental system of solutions to (3.16); every solution to
(3.16) is given by a linear combination of these functions. By
taking the asymptotic property of M,, , (¢) ast—»0and 71—
into account, we see that possible solutions to (3.16) with
condition (3.15) are scalar multiples of the Whittaker func-
tion W 5,5 (2)s with

O<|Re a—FE|<a. (3.17)

Condition (3.17) comes from the integrability condition of
t2@=27%1y(1)|* near ¢t = 0. On the contrary, if we define
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f(x) by relation (3.14) with v(z) = OJH -, (1) under
condition (3.15),then fisin L >(R) ( f #0) and satisfies Eq.
(3.12). O

Lemma 3.6: (i) Every solution f eD(dd) ND(e***) to
Eq. (3.10) has the form (3.4).

(ii) For all ueD,, the function f, given by (3.4) is a
solution to Eq. (3.10) with £,eD(d3) ND(e***).

Remark: The sets of the solutions g of Eq. (3.11) consist
of the complex conjugates of the solutions f to (3.10).

Proof: (i) If f isin D(8d) ND(e*** ), then Eq. (3.10) is
equivalent to

( j 22+2aai+4|/1|2 e Z“X)f(x,p) = E(p)f(xp)
(3.18)
with
E(p) =p(2a—p), peR, (3.19)

Where](x,p) is the Fourier transform of f{x,y) with respect
toy:

Fxp) = ~Pfxp)dy .

2
V1a Lemma 3.5 (i), Eq. (3.18) has no nonzero solutlons
F(-,p)eD(d ¥/dx?) N D(e** ) if E(p)<0. Hence f(*,p) =
for all p&(0,2a).
Let E(p) >0, ie., 0<p<2a Then by Lemma 3.5 (ii),
every solution f( Lp)eL2(R) to Eq. (3.18) is given by

f(x’P) =u(p)e™”? Wola — pira (414 |€7%) =fu (x,p) ,
where u is a function on the set S={peR|0<p <2a,p#a/
2,a,§a}. Thus the desired result follows.

(ii) Let ueD,. We need only show that f, is in
D(39) N D(e*** ): We write it as f, = f. By the asymptotics
of the Whittaker function W, . () at t= O and t= + o
(see, e.g., Ref. 9, Chap. XVI), we see that f and e2“7(x,p)
are in L 2(R?). By using the recursion relation

zWiom(2) =

we can show that

/D)W, (z) — W, . (2),

O 7 ixp) =2 (xp) + 214 |aeFx,p)
ox 2

— au(p)eax/Z Wl,‘a — pisa (4|/{ IeaX) . (320)

Each term on the rhs of (3.20) is in L?(R?) and hence
3f(x,p)/8x is in L 2(R?). By virtue of (3.18), this 1mphes
that d 2f(x,p) /dx?isin L 2(R?). We canalsosee that p 2f(x,p)
isin L 2(R?). Thus the function £ isin D(dd) ND(e***). O

Lemma 3.7: Let f,, be given by (3.4) with ueD,. Then
f., isin D(d) N D(e**) and e ~ ** Jf, is in L ?(R?). ’

Proof: By the proof of Lemma 3.6 we have f,
eD(3d)ND(e**). Since  D(d3) ND(e***) CD(J)
ND(e**), we obtain f,eD(d) N D(e*).

Let

h(xy) = e~ “(3f,) (xp) -

Then we have

iz(x,p) =—e" ‘”‘(—(%fu (x,p) — pfu (x,p)) .
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By using (3.20), we obtain
2h(x,p) = R(x,p) + 2|4 |af, (x,p) ,
where
R(x,p) =u(ple™ " (a/2 — pYWo u_ pya (4|4 |€*)
—aW\ o psa(4l4 e} (321)

Since}’u isin L 2(R?), we need only show that the function R
is in L 2(R?). It is easy to see that for every ceR,

Jdpfwdle(x,p) < o .
R <

By the asymptotics of W, ,, (2) at z = 0 and by virtue of the
condition supp ¥ C (0,a/2)U (a/2,a), we see that

e R(xp) ~ u(p)w,(p)
X (4|4 |e*) ~ la —pl/a+ 1/2.(4M ™)
and hence
R(x,p) ~ u(p)wz(p)e("*la—p\)x,

X— — oo
with the continuous functions w, and w, on the support of u.
Therefore, we have

fdpf dx|R(x,p)|* < o .
R —~ o0

Thus we obtain ReL 2(R?). O

Proof of Proposition 3. 1: Via Lemma 3.6, the set of solu-
tions to Eq. (3.10) in D(d3) ND(e**) consist of just func-
tions of the form £, givenby (3.4).Iff, and f, givenby (3.4)
and (3.5), respectively, are in L?(R?), then R(-,p) defined
by (3.21) must be in L *(R) for a.e. pe[0,2a]. We can show
thatif a<p<2a, then R(-,p) isnotin L *(R) (cf. the proof of
Lemma 3.7). Hence we have supp ¥ C [0,a]. Then the first
assertion follows from Lemma 2.6(ii) and (iii) and the re-
mark after Lemma 3.6.

Via Lemma 3.7, every f, with ueD, satisfies the as-
sumption of Lemma 2.6(ii). Therefore, for every ueD,,, the
pair (f,,f.), with f. given by (3.5), is in Ker Q.

=Ker H,. Via Lemma 2.6(iii) and the remark after
Lemma 3.6, we also have (( f,)*, f*)cKer H, for every
ueD, . Thus we obtain (3.7). We have dim D, = « and, if
the vectors u,...,u,, €D, are linearly independent, then so are
the vectors (f,,‘,}”,,l ),...,(fu",]un). Thus (3.8) follows. O

IV. APPLICATION

In this section, we apply the result in Sec. Il to models
in atomic and nuclear physics, which were discussed in Ref.
1.

A. Nonrelativistic spin-] particle in an external SU(2)
gauge field

Let 7,, a = 1,2,3 be the generators of the SU(2) group.
An external SU(2) gauge field A(x) = (4,(x), 4,(x),
Ay(x)),  x=(x;x,x;)€R’ is given as  A4;(x)
=3,_, 47 (x)7,, j=1,2,3, where we take 4 { to be real
valued. Then the Hamiltonian of a nonrelativistic spin-4 par-
ticle with mass 1 coupled minimally to the gauge field is
given by
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H,=1(—iV—gd) ~ 0B, (4.1)
where geR\{0} is a coupling constant, V = (d/9x,,d/
0x,,0 /0xy), 0=1(0,,00,05), and B; =g(curl4);
+ 1838 m— 1 € [AisA,m ] (Where €, is the Kronecker
antisymmetric symbol).

We consider the following situation.

(a): (i) 4,=4,=0, (ii) 43 =0, (iii) 4}(x) and
A7 (x) depend only on x, and x,, and (iv) V, = 0, where
condition (iv) means that we consider only state vectors
independent of x, and identify them with elements in
L?(R*C*). Let ¥ be a holomorphic function on C and H be
given by (2.21). Then it was shown in Ref. 1 that under
condition (a), with4 } —id} =2 dV /g, H, can be written
as

H, =2H

with a rearrangement of components.
Proposition 4.1: Suppose that condition (a) is satisfied.
Let

AL (x,x,) = (2aA /g)e™ cos ax, ,

(4.2)

4.3)
4.4)
with @ > 0and A€R\ {0}. Then H , has infinitely many zero-
energy states ¥ in L *(R*C*):H, ¥ = 0. Further, the Four-
ier transform W(x,,p) of every W(x,,x,) with respect to x,

has compact support in peR.
Proof: By (4.3) and (4.4), we have

A3 (x,x) = — (2ad /g)e™ sin ax, ,

Al _ja2 =29Y
g
with V(z) = Ae™* (z = x, + ix,). Thus by (4.2) and Propo-
sition 3.1, we obtain the desired result. O

Remark: The gauge field given by (4.3) and (4.4) is
periodic in the x, direction. This may be an origin of the
existence of infinitely many zero-energy states and the local-
ization of the states in the momentum space dual to the x,
direction.

B. Nonrelativistic nucieon in an external pion field

The Hamiltonian of a nonrelativistic nucleon in an ex-
ternal pion field #(x) = (¢, (x),8,(x),d;(x)), xR is given
by

Hy, = —3iV? + g0 V(r-4(x)) + 176 (x)* . (4.5)
(See Ref. 1.) Suppose that the following condition is satis-
fied.

Condition (¢): (i) ¢; = 0, (ii) ¢, and ¢, depend only on
x, and x,, and (iii) V, =0.

Then it was shown in Ref. 1 that

H, =2H,
with ¢, — i, = —2idV/g.

Proposition 4.2: Suppose that condition (¢) is satisfied.

Let
é,(x,,x,) = (2Aa/g)e™ sin ax,,

(4.6)

@, (x,x,) = (2Aa/g)e™™ cos ax,,

with a>0 and AeR\{0}. Then, H, has infinitely many
zero-energy states @ in L *(R%C*):H,® = 0. Further, the
Fourier transform ®(x,,p) of every ®(x,,x,) with respect to
x, has compact support in peR.

Proof: Similar to the proof of Proposition 4.1. O
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APPENDIX: KERNEL OF A SCHRODINGER OPERATOR

Let d be an arbitrarily fixed positive integer. Let Ube a
real-valued measurable function on R? and A be the d-di-
mensional Laplacian: A =Z2{_,9%/9x], x= (x;...x;)
€R?. We consider the Schrédinger operator

Hi=—-A+U
acting in L2(R%).

Lemma Al: Suppose that C%(RY)CD(U) and U>0.
Let H be the closure of Hg | C2(R?). Then we have

Ker H, = {0} . (A2)

Remark: (i) It is obvious that under the condition
Ci(RH)CD(U), Hg } C3(RY) is closable and symmetric.

(ii) The domain D(H) is not necessarily equal to
D(AYND(U). This is the reason why we need a limiting
argument to prove (A2) (see below).

Proof: Let feKer Hy:H f=0. Then we can take a se-

quence {f,}CC2(R?) such that f,>f and Hf,—
0(n— o0 ): It follows from the latter that

Z DL IP + ULl =0,

(AD)

where D; = 3 /dx;. Hence we have D,f, —S+0,j = 1,...,d, and
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U'?f, 20. Since D;, j=1,...,d, are closed, it follows that
feD(D;),j=1,...d, and

Df=0, j=1,.d,
which, together with feL (R?), imply that f = 0. O
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The Lagrange multiplier theorem is generalized for constrained functions on dual pairs of
Banach spaces. Then a variational principle for dual pairs of Banach spaces is proven for the
case when the constraint set is given by a symmetry and it is generalized to Banach manifolds.

I. INTRODUCTION

The classical variational principle states that for a differ-
entiable function F: R"— R a necessary condition for a point
x4,€R" to be alocal extremum of Fis that VF(x,) = 0. This is
easily generalized to Banach spaces. Let X be a Banach space
and F: X - R a differentiable function. A necessary condition
for F tohave an extremum at a point x,€ X is that the Frechet
derivative of Fat x, vanishes, i.e., DF(x,) = 0. By definition
DF(x,) is a continuous linear map from X to R hence an
element of the dual space X *; DF(x,)e X *.

In physical applications the Banach spaces in question
are often function spaces such as X=C![g,b] or X

= C>[a,b ], etc., and it can be difficult to determine the
corresponding dual space X *. However, in order to just
compute DF(x,) we do not need to know what the dual
space X * is because the Frechet derivative can be computed
in using the directional derivative (Gateaux derivative),
i.e.,, DF(xy)h = (d/dt|,_,)F(x + th) for any he X. The
knowledge of the dual space X * becomes more important
when one considers the problem of finding an extremum of a
function Fsubject to a constraint. As in classical theory, one
formulates this problem as a Lagrange multiplier problem
(Kolmogorov,' Weinstock,” Whittacker,> Goldstein*), but
now the Lagrange multiplier is no longer a real number as in
the finite dimensional case, but an element of the dual space
X *, i.e., a continuous linear functional on X. To avoid the
problem of determining the dual space X * we consider a
more general concept of duality of Banach spaces. The idea
is that one chooses a convenient ‘‘dual” space with respect to
a pairing (see Schmid’ for details). In Sec. II we introduce
the concept of dual pairs of Banach spaces and in Sec. I1I we
formulate the variational principle in this context and prove
a Lagrange multiplier theorem with respect to a constraint
surface. We study several examples; in particular, we derive
Maxwell’s equations from this variational principle by vary-
ing the field and not the potential. The existence of the vector
potential follows from the Lagrange multiplier theorem, 1.e.,
the potential arises as a Lagrange multiplier associated to the
inhomogeneous equation. In Sec. IV we study the variation-
al principle in the case where the functional is invariant un-
der some symmetry group and the constraint surface is then
given by the fixed point set of the action. The question now is
whether critical symmetric points are also symmetric criti-
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cal points. We give a necessary and sufficient condition for
this “Principle” to hold.

li. DUAL PAIRS OF BANACH SPACES

A pair of Banach spaces (X,X ') are called dual to each
other with respect to a pairing if there exists a continuous
bilinear map ( , ): X' XX Rthatisweakly nondegenerate.
This means that if (x’,x) = O for all xe X, then x’ = 0, and if
{x',x) = Oforall x'e X' then x = 0. This is equivalent to the
condition that the induced linear maps from X' to X * and
from X to (X')*definedbyx’' - (x',- ), x'e X',and x - (- ,x),
xe X, are one-to-one. If these maps are isomorphisms then
the pairing { , ) is called nondegenerate.

A weakly nondegenerate pairing { , ) thus represents
certain linear functionals on Xin terms ofelementsin X ', i.e.,
each element x’e X' defines an x*e X * by x*(x) = (x’,x),
xe€ X.

Examples: (1) Let QS CR" be open and consider the
Banach space X = C*(Q) of real-valued functions of class
C*on ). Take X' = C*(Q1) = X. Then a pairing (called the
L? pairing) between X and X ' is given by

(, CHIXCHQ)Y-R; (fg) =ff(x)g(x)dx-
QO

The dual space of C*(Q) is the space of distributions on Q
and ( , ) defines a one-to-one linear map from X to (X ')*.

(2) Let X = H*(R") be the space of H* vector fields on
R" and take X' = H(A'(R")) the space of H * one-forms on
R". Then a weakly nondegenerate pairing

(, 2H*(R")XHA'(R))-R
called the L ? pairing is given by

Xa) =1 X(x)-a(x)dx, XeH*(R"), acHA'(R"))
-

(3) If X is a Banach space with an inner product  , ):
X xX-R;thentake X' = Xand { , ) definesa weakly non-
degenerate pairing since ( , ) is positive definite. If X is a
Hilbert space then the inner product { , ) defines a non-
degenerate pairing by the Riesz representation theorem.

(4) Let X by a Banach space and take X' = X *. Then a
pairing { , }: X*XX—R is naturally given by (x*, x)
= x*(x) and the map X— X * is the identity. Thus if X is
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reflexive then the pairing ( , ) is nondegenerate by the
Hahn-Banach theorem.

Let (Y,Y’) be another pair of Banach spaces with a
weakly nondegenerate pairing ( , )y: Y'X YR and let
A: XY be a linear map. The adjoint of A, if it exists,
is the linear map A*: Y’ X' defined by {(4*x),
= (), Ax)y, x€ X, ye¥', where (, )y denotes the
pairing between X and X'. If 4 is closed and linear then
A** =4

Example 5: Let M be an n-dimensional manifold and
A*(M) the space of differentiable k-forms on M [completed
in some suitable H *-Sobolev topology so A*(M) becomes a
Banach spacel, and let #:A*(M) > A"~ *(M) be the Hodge-
star operator. Then for X = X' = A*(M) the L’ pairing
(, ) AM(M) X AX(M) - Risgiven by (a,B) = [ya A*f,
a,Be AF(M). If d: AX(M) > A* * (M) denotes the exterior
derivative then §=x*d *: A*(M) - A*~ (M) is the adjoint
operator, {da,8 ) = {(a,08 ). i.e., Sy daA+3 = [, ,a\N5+B.

Let L be a linear subspace of X. The orthogonal comple-
ment L* of L in X' is the linear subspace of X' defined by
L' ={xeX'|{x",L) =0}. If L is a closed split linear sub-
space of X, i.e., if there exists a topological complement W of
LinX,LoeW=X thenL = (L")".

Lemma 1: Let A: X— Y be linear such that ker 4 splits.
Then (Ker 4)* =1Im 4 *.

Proof: Let y'e(Im A)". Then {y’, Ax) ; = O for all xe X,
hence (4 *y',x), = 0 for all xe X, which implies 4 *)' =0
and so y'eker 4 *. Reversing these steps shows that (Im 4)*
= Ker 4 *. Therefore (ImA4*)! =ker A** =ker4 and
(ImA*)* =ImA*= (Ker 4)". m

Ill. LAGRANGE MULTIPLIERS IN DUAL PAIRS OF
BANACH SPACES

With this notion of duality we introduce the functional
derivative. Let F: X — R be differentiable at x,€ X. The func-
tional derivative (or variational derivative) 6F /6x, of F with
respect to x,, is the unique element 6F /6x,e X', if it exists,
such that

DF(xg)h = <:—F,h>, for all ke X.

Xo

Remark 1: For a functional of several variables, e.g., F:
X, X X,— R (with weak duals X |,X } ) the partial functional
derivatives 6F /6x X |, OF /6x,X ), x,€X |, x,€X 5, are
defined in a similar way (for details see, e.g., Schmid®).

Proposition 1: Let F: X-R be C'. If x,c X is an extre-
mum of ¥ then 6F /6x, = 0.

Proof: For each he X let f (¢) = F(xy + th). If x, is an
extremum for F, then ¢ =0 is an extremum for £ R—R;
hence f'(0) = 0. So for any he X

0=r =2 Flx,+ th) = DF(xgyh = <5—F ,h> .
d t=0 5x0

Hence (6F /6x0,h ) = Oforall he X, therefore 6F /6x, = 0.1

Let (X,X") and (Y,Y’) be two pairs of Banach spaces
with the corresponding weakly nondegenerate pairings
(, )5 X'XX-R,(, )y: Y XY=R,andletd:X— Ybe
a differentiable map. Let F: X— R be a differentiable func-
tion. We want to find a criterion for an extremum of the
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function F(x) subject to the constraint condition ®(x) = 0;
i.e., we consider ® as constraint map and look for extrema of
F on the constraint surface £ = &~ '(0) CX.

Theorem 1: Let F: X—R be C' and a constraint map &:
X-Ybe C'. Assume OcY is a regular value of ® and let x,,
€2 =®""'(0). If x,is an extremum of F /3 then there exists a
yoeY' (Lagrange multiplier) such that

SoF = DO (x5)*y5.

ox,

Lemma 2: In the situation above, if hicKer Dd(x,),
then (6F /6x4,h )y =0.

Proof- If 0c Y is a regular value of ® then £ = &~ '(0) is
a submanifold of X and the tangent space to the surface 2 at
x,€2 is given by T, = = Ker D®(x,), which splitsin T, X,
the tangent space of X at x,, (T, X=X). For heKer D®(x,)
choose a curve y: R—Z2 such that ¥(0) =x, and #(0)
= heT, I. If x, is an extremum of F/Z then t=0is an
extremum for f (¢) = (Fey) (¢), hencef'(0) = 0. Therefore

d

0=2=
dt t=0

(Foy)(t) = DF(y(0))-¥(0)

— DF(xy)-h = <ﬁ5,h>. n
x,

Proof of Theorem 1: From Lemma 2 we get that
if x, is an extremum of F/Z then (8F/8x,,h ) =0 for
all heKer D®(x,), hence SF /6x,c[Ker D®(xy)1'CX".
Lemma 1 implies that [ Ker D®(x,)]' = Im D®(x,)*C X’
and therefore 8F /bx,clm D®(x,)*, i.e., there exists a
yoeY ' such that 8F /6x, = D®(x,)*y;. [ ]

Corollary 1: Theorem 1 is true under the following
weaker assumptions: The constraint map ®: X— Y need not
be differentiable on the whole space X; it is enough that
= = &'(0) is a submanifold of X and ® is differentiable in
a neighborhood of x, in X. Furthermore we assume that
D®(x,)(X) is closed in Y and that the tangent space at x,
to Z is given by T, = = Ker D®(x,). Then if x, is an ex-
tremum of F /2 then there exist ;R and yjeY ' (Lagrange
multiplier) such that

6F

Ao— + DP(x)*y; =0.
ox,

Proof: Under these conditions we have to consider
in addition the case when D® (x,) (X) is not the whole space
Y. Denote by L=D®(x,) (X)C Y. By the Hahn-Banach
theorem there existsa y,eY’, y; #0such that (y;,L) = 0. So
for any xe X we have (D®(x,)*y{,x) y = (¥6,DP(x4)X) y
=0, since D®(x,)xel. Hence DD (x,) *y, = 0 and we can
choose 4, = 0.

For the case where D®(x,) = Y the previous proof of
Theorem 1 works with the choice of 1, = — 1. ]

Remark 2:1f X' = X * the dual space of X and the pairing
isthenaturalone { , ): X *XX-R, (£,x) = £(x) then Cor-
ollary 1 becomes the usual Lagrange multiplier theorem in
Banach spaces, e.g., Kolmogorov and Fomin.'

Assume we are in the situation of Theorem 1 and let us
define a function H: X X Y'—-R by

H(xy) =F(x) + (¢, ®(x))y, xcX, yeY'
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Theorem 2: If x,£2 = ®~!(0) is an extremum of F /2
then:

oH
122 =,
O
OH
2) —=0.
@ 5

Proof: (1) We compute 6H /6x for xe X: 6H /bx
=6F /6x + 6/6x(y",®(x))y. Let us denote A(),x)
= (J/,®(x)) and compute 8h/5x, which is defined by

D,h(x)-v = (5h /6x,v)y, ve X, where D,h denotes the par-
tial derivative of 4 with respect to the second variable, so

Dh(y' x) v = i’ h(y'\x + tv)
dtl,—o
= <y’,—‘£ d(x + tv)>
dtli-o Y

= (y,DP(x)v)y = (DP(x)*Y' ).

Hence O&h/6x=D®(x)*y, and we get O6H/bx
= 6F /6x + DO (X)*)'. If x,€Z is an extremum of F/3
we get from Theorem 1 that 0= 6F/6x,+ DP(x,)*y'
= 6H /bx,.

(2) We compute O8H/6y' for y'eY': SH/6y
= (6/8y)(y,®(x))y = 6k /8y, which is defined by
Dh(y) w= (wbh /')y, where D,k denotes the partial
derivative of . with respect to the first variable, i.e.,

Dlh(}")'W=i‘ Ay + tw,P(x))
dtli—o
d ,
== (y +tw,q>(x)>y
dt t=0
= (W, P(x)) y;

hence 6h /8y’ = ®(x).If x,eZwegetSH /8y = ®(x,) =0,
which recovers the constraint equation. ]

In many examples the constraint map is a real valued
function ®: X — R. In this special case, i.e., where ¥ = R, our
theorems take simpler forms. Let { , }: X'XX—-R be a
weakly nondegenerate pairing between the Banach spaces X’
and X and let : X R be a C'! constraint map and OcR be a
regular value of ®. Then ¥ = ®~!(0) is a submanifold of X
and at each point x€Z the tangent space to X is 7,2
=Ker D®(x), which splits in 7, X=X. A vector x'e X' is
called perpendicular to X at the point xeX if {(x',4 ) = 0 for
all AT, =. With this terminology we get the analog result as
in finite dimensions.

Lemma 3: For any xeZ, 6®/6x is perpendicular to X at
x.

Proof: Let heT, X = Ker D®(x), then 0 = DP(x) h
= (5P/6x,h ). [ ]

Lemma4: Let F: X—Rbe C . If x,€Z is an extremum of
F /% then 6F /6x, is perpendicular to X at x,,.

Proof: Let heT, 3 = Ker D®(x,) and chooseacurve y:
R - 2 such that ¥(0) = x, and #(0) = 4. Then if x, is an
extremum of F /2 the function f (¢) = (Foy)(¢): R—»Rhas
an extremum at £ = 0, hence /' (0) = 0. So
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d )
0=2|  (Foy)(t) = DF(y(0)) #10)
dt t=0
— DF(xo)-h = <—5-5 ,h>. n
6x,
Corollary 2: If x,€3 is an extremum of F/Z then
(8F /6x0,h ) =0 = (6B/bx,,h ) forall heT, 3,i.e.,thereex-
ists a number A€R such that

OF 2820

bx, x,

This result resembles the classical finite-dimensional
Lagrange multiplier theorem, which states that at an extre-
mum x,eR” of a function F* R"— R with respect to a con-

straint ®: R" >R we have
VF (x5) + A V®(x,) =0

for some A€R.

If we define as in the general case the function H:
X XR-R by H(x,A) = F(x) + A®(x), we obtain from
Theorem 2:

Corollary 3: If x, is an extremum of F /2 then

6H 6F 6P
H)—=—+4A—=0
( )6x0 x, 8x,

SH
(2) g = (I)(xo) =0.

Example 6: This example of a constraint variational
problem is a generalization of the Euler-Lagrange equation
where the constraint is given by the time derivative of the
position equal to the velocity. Let (X,X ") and (Y,Y ") be dual
pairs of Banach spaces with X=U X¥Vand Y= V. Let F:
UXV-Rbe C'and ®: UX V-V be linear of the form
$(u,v) = Au 4+ By where A: U- V and B: V- V are linear
operators. Then we get from Theorem 2:

SOF

2 _awy,
Su, Y
*
( ) éE — _B*yl,
v,
Augy + Bvy = 0.
Suppose B * is invertible, then
y' = —B *—! ﬁ ’
v
E_A ,..B*_15_F=0’
Suy v,
Auy + Bvy=0.

For a concrete application we consider the following: Let
U= {ueC'([0,1},R)|u(0) = u(1) = 0} withtheusual C -
norm; i.e.,
|lull, = sup |u(£)| + sup |&'(2)|,
«[0,1] «€[0,1)
and let V= {veC°([0,1],R)|v(0) = (1) =0} with the
usual C%norm; i.e.,
ivilo = sup |v(2)].
(0,1}

Let X=UXV and F: X->R be given by F(u,v)
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= foL(u(t),v(2))dt, for some Lagrangian L(u,v). Let Y
= Vand ®: U X V- Vbegivenby ®(u,v) = (d /dt)u — v.
Then 4 = (d /dt): U V is bounded; indeed

d ,
|4ullo = HZ uflo = :{gg]lu (1]

< sup |/ ()| + sup |u(2)] = [lu|;.
te[0,1] 1€(0,1]

Moreover B = — Id: V- ¥, hence & is bounded.

We return for a moment to the general case: The La-
grange multiplier is defined only on the stationary points. If
a differentiable function can be found that extends the La-
grange multiplier to the entire space y': X— Y then one can
pose a related variational problem as follows. Defining
H(x) = F(x) + (/(x),®P(x)}) one finds stationary points
of H by

2L 1 DOx0)*y (x0) + Dy (30)*®(x0) =0,
0
This problem has the same solution as the original constraint
problem on the constraining surface but may have other sta-
tionary points that are not on the surface. If not, we call the
functional F regular with respect to ®, or ® regular.

We apply the preceding remark to our example. An
extension of the Lagrange multiplier is given by )’
= — B*~1(8F /8y) and a computation shows that Fbeing
regular is equivalent to the Hessian being nonsingular. We
get the following two equations:

g_ —A*B*! ﬁ — [DIB*_I ﬁl‘?‘] D (up,v,) =0,
Suy v, &v,
[DzB - 5—F] ® (upsv) =O.

v,

IfKer[D,B *~'(6F /6vy) 1* = Othen ® = Ois the only solu-
tion of the second equation and therefore F is regular.

Example 7: Let X =H be a real Hilbert space and
Y=RX' =X*x=H,Y' = Y*=R.LetF(x) = (x,Ax) and
d(x) = (x,x) — 1, where 4 is a bounded self-adjoint opera-
tor on H. All the hypotheses of Theorem 1 are satisfied and
one computes easily: DP®(x) h=2(h,x), OF/6x = 24x,
DI (x)*: R—>H; D®(x)*A = Ax and from Theorem 1 we
get Ax = — Ax.

Example 8: In this example we derive Maxwell’s equa-
tions from a variational principle with constraints. The
electromagnetic potential will appear as the Lagrange multi-
plier and the homogeneous Maxwell equation as the condi-
tion of extremum of the variational principle. We put this
example in a geometric setting. Let M be a four-dimensional
Riemannian manifold and consider the Banach spaces X

=X'=A*(M) and Y=Y’ = A'(M) with pairings as de-

scribed in Example 5, {(a,8) = fy,a A+ and 6 = «d * the
adjoint of d. Consider the action F: X-R, F(Q) = }(0,Q)
=1£,, QA A*Q and think of QeA’(M) as representing the
electromagnetic field. Let JeA (M) be a fixed one-form
representing the external current. Then the field () must sat-
isfy 80 = J and we get the constraint equation with ®:
X=A(M)-Y=A"(M)asP(Q) =860—J=0.Since P
is linear we have D® = 5Q and hence for (Dd)*: Y’
=A' (M) - X' = A*(M) we get for any AeA'(M), Q
eA* (M),
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((DP)*4,2) x = (4,(DP) D),
= (4,6Q)y = (d4,Q)

or equivalently
f (D¢)*A*Q=f ANDD(*Q) =f dA A *Q,
M M M

hence (D®)*4 = dA for any AeA'(M). Moreover 5F /50
= 0 and if ®(N) =0 and Q is an extremum of F then by
Theorem 1 there exists an AcA' (M) such that

Q =-§£= (DP)*4 = dA,
60
i.e., = dA. Therefore the Lagrange multiplier is identified
as the vector potential. Furthermore, from the constraint
equation 6 = J we get immediately 6J = 0, which is the
continuity equation for the current. So we have derived
Maxwell’s equations by making a variation of the field Q
instead of the potential 4 as in the usual treatment, by impos-
ing the constraint condition on £ in terms of the current J.

IV. VARIATIONAL PRINCIPLES AND SYMMETRY
GROUPS

Next we study the variational principle in the case when
itis invariant under some symmetry group G. Then the ques-
tion is the following: For a fixed point of the action of G to be
an extremum for a G-invariant function F, does it suffice to
check the vanishing of the first variation of F with respect to
variations that are symmetric? In other words, the question
is whether a critical symmetric point is also a symmetric
critical point. In Ref. 6 Palais gave a necessary and sufficient
condition for this “Principle” to be valid for any Banach
space. This is again formulated in terms of the dual space X *.
We generalize this result to the case where one is allowed to
choose any generalized dual space X ' of X with respect to any
weakly nondegenerate pairing ( , ): X'XX-R.

Let G be a Lie group acting on the Banach space X by
linear transformations ¢,: X— X, g€G, ¢, (x) = g'x and as-
sume that the dual action ¢, . *: X' - X’ exists. Denote by
2 = {xe X ¢, (x) = x, for all geG} the set of fixed points
(symmetric points) of X under the action of G. Since the
action is linear, X is a linear subspace of X. Similarly let
3. ={x'eX’|¢,*(x') = x', for all geG} denote the set of
fixed points of the dual action. Z. is a linear subspace of X '.

Lemma 5: (Chain rule for the functional derivative).
Let ¢ X — X be a differentiable map and F: X - R be differen-
tiable at x,€ X, then:

S(Fog) SF

— Dp(xg)*—F
5%, P St

Proof: From the chain rule of the Frechet derivative
D(Fog)(xy)-h = DF(¢(xy)) (Dp(x,) -k} for any he X we
get, assuming that all functional derivatives and adjoints ex-
ist,

5(Fod) < SF
D(Fo b= A= {—2F _ po(x)h
(Fof) (xo) < 5%, > By D) >
5F
— (g )*———,h>
< P (%o Sl (x0))
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for all ke X. [ |

Lemma 6: Let F: X—R be a smooth G-invariant func-
tion, i.e., Fog, = F for all geG. If peX then 6F /6pe3..

Proof: From Lemma 1 and G invariance we get for all
geG:

0,

6_F—_—M=D¢g(p)*_éf_.

bp p ¢, (p)

Since ¢, is linear and peZ, this equals ¢, *(SF /6p). [ ]

This lemma says that the variation of an invariant func-
tion with respect to a symmetric point is symmetric with
respect to the dual action. Next we show that the variation of
any functional subject to a constraint, with respect to a criti-
cal point, is orthogonal to the constraint set.

Lemma 7: Let WCX be a subspace and F: X—R be
differentiable. If peW is a critical point of F/W then
8F /8peW .

Proof: Let heW and choose a curve y: R— W such that
¥(0) = p and #(0) = h. If p is a critical point of ¥ /W then
the function £ (¢) = (Foy)(¢): R—R has a critical point at
t =0, hence f'(0) = 0. Therefore

0=2|  (Foy(n) = DFr(®) 7(O)

d t=0
—ortp= {2 1),
p
hence (6F /8p,h ) = O for all heW, i.e., SF /SpeW*.

If W = X we get as a corollary that at any critical point p
of F we have 8F /8p = 0. Indeed, since the pairing { , ) is
weakly nondegenerate (8F /5p,x) = O for all xe X implies
O6F /6p = 0.

Now we choose for the constraint subspace W the set =
of fixed points of the G action and we obtain the following:

Theorem 3: Let G act linearly on the Banach space X and
let F: X - R be a smooth G invariant function. Let peX be a
(symmetric) critical point of F /2. Then p is a critical point
of Fif and only if 2. NZ' = 0,

Proof: (1) Let peX be a critical point of F /Z. It follows
from Lemma 6 that 6F /peZ. and from Lemma 7 that
SOF /8pes*. Now if p is also a critical point of F then 8F/
&p = 0 therefore 2. NZ' = 0. (2) Assume that 3. N2 =0
and let peZ be a critical point of F/Z. From Lemma 7 it
follows that 8F /8peX". Since Fis G invariant we get from
Lemma 6 that §F /8peX. , hence 8F /6p = 0. |

This theorem is a very simple check of whether a critical
symmetric point is also a symmetric critical point in the lin-
ear case, i.e., for a linear action of a Lie group on a dual pair
of Banach spaces. In order to generalize this theorem to G
actions on a Banach manifold M, one can require that at each
point p of M the action of G on M being linearizable about p.
That means that there exists a local coordinate system about
p in which the action is linear, and that in this linear coordi-
nate system the condition of the (linear) Theorem 3 is satis-
fied, i.e., =. NZ! = 0. It is shown in Palais® that these hy-
potheses are satisfied for semisimple Lie groups acting real
analytically on a finite-dimensional real analytic manifold.
Therefore in these cases the theorem generalizes to mani-
folds.

We now prove a more general form of the “Principle,”
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which is valid for a general nonlinear action on a Hilbert
manifold. This is usually the framework of physical applica-
tions. In Remark 3 we will consider the case of an actionona
Banach manifold.

Theorem 4: Let ¢, be a differentiable action of a group G
on a Hilbert manifold M; let 2 be the set of fixed point of ¢, .
Consider (D¢, )*(p) (* denotes the Hermitian conjugate)
at peZ and the vector subspace £* of T,M given by
¥ = {xeTpM | (Dé)*(p)x = x}. Then for any invariant
functional F the condition dF(h) = 0 for all heZ* implies
dF=0.

Proof: This is an immediate consequence of Lemma 7
applied to the case where W= 2*, and of Theorem 3.

Theorem 4 is like the proposed generalized ““Principle”
in Ref. 6, the difference being that here we use the adjoint of
the linearized action instead of the derivative itself. We test
Theorem 4 on the two examples in Ref. 6 where the “Princi-
ple” in its original form fails.

Example 9: Let G =R, M = R? with the usual scalar
product and

#()=(o 1) C) men 2=(5)

D</),*=(1 0), and E*E(O).
t 1 §Y

Theorem 4 states that for any invariant function F on R?,
JdF /dy = Oimplies DF = O on =. This is the case because any
invariant function of this action is of the form F(x,y)
=f).

Example 10: Let G =S0(2,1) and M = L,(S') with
the usual scalar product. The action is generated by the fol-
lowing operators:

. 1 d
A, = —sin(2a) + — cos(2a) —,
1 2a) 5 ( )da
Azzii,
2 da

| d
Ay =cos(2a) + 5 sin(2a) o
It follows immediately that £ =0CL,(S"') and that Dg¥*
= ¢} is generated by the negative Hermitian conjugate op-
erators:

1 d
—A¥=—cos(2a) —,
1 ) ( )d

(04
_A;_—__l_.i
2 da
—ar=Lgina) L.
2 a

From these we get 2*={ f= const}. Theorem 4 states that
at the origin any invariant functional has an extremum if and
only if it has vanishing derivative in the direction of this
constant function.

Theorem 4 reduces to the “Principle” in the linear or
linearizable case for compact group actions or for semi-
simple groups acting on finite-dimensional Hilbert mani-
folds. In these cases X is in fact a submanifold of M and
D¢, is completely reducible and therefore X*
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= {x|Dg*(p)x = x} = {x| D¢, (p)x = x}=T,3,peZ.

Remark 3: For an action on a Banach manifold, =*
cannot be identified with a subspace of 72. One can recover
an analog of Theorem 4 by considering a topological comple-
ment W of Z*, i.e, We3I* =X’ and replacing 2Z* with
wicx.

Remark 4: When the action is not linearizable, Theorem
4 (whilesstill true) may reduce to a trivial statement as in this
example: Let G = R and M = R with the usual scalar prod-
uct. Let

% ()=6 10)

Then

and on X we have

1 0 x
D rz( ) and z*s( )Enz.
4 0 1 §7

Theorem 4 states that if both partial derivatives are 0 then
DF=0.

Remark 5: This remark is based on an argument about
finding symmetric solutions by Coleman’ in his Erice lec-
tures. Let G act on the Banach manifold M and let F: M- R
be an invariant functional with X its set of fixed points. From
G invariance of F, Fog = F, we get TFoTg = TF, where T
denotes the tangent map. Computed at any point xeX we get
locally

F'(x)Dg(x) =F'(x). (%)
This holds for any action of G, linearizable or not. Here
Dg(x) is a linear representation of the group G. If the repre-
sentation Dg(x) is completely reducible then let [Dg(x)],
denote the irreducible pieces, Dg(x) = X [Dg(x)], and
(*) becomes

F'(x)[Dg(x)1, = F'(x). (*%)
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Equation (**) states that F'(x) intertwines the irredu-
cible representations [Dg(x)], of G with the trivial repre-
sentation on R. Now Schur’s lemma implies that F’(x) #0
only on a subspace E of T, 2 on which Dg(x) acts trivially,
i.e., E = {veT M |Dg(x)v = v}.If P denotes the projection
onto E, P:T . M- E,weget F’'(x)h = F’(x)Ph. Taylor’s for-
mula for F then becomes

F(x+ h)y =F(x) + F'(x)Ph + \F" (x)(hh) + €.

This shows that x is a (nonrestricted) extremum if
F’(x)h = Oforall heE, i.e., one defines x to be a critical point
of F /2 tomeanthat F'(x) Ph = 0. Therefore the “Principle”
holds. This is true whether 2 is a manifold or not (Palais’).
If X is a smooth manifold and the action is linearizable at all
points xeX then E = T 3. In this situation the “Principle”
holds in its usual interpretation because F'(x)Ph = 0 im-
plies x is an extremum of F /3.
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The velocity distribution of a spatially uniform diluted guest population of charged particles
moving within a host medium under the influence of a D. C. electric field is studied. A
simplified one-dimensional Boltzmann model of the Kac¢ type is adopted. Necessary conditions
and sufficient conditions are established for the existence, uniqueness, and attractivity of a
stationary non-negative distribution corresponding to a specified concentration level.
Conditions for the onset of the runaway process are established.

I.INTRODUCTION AND STATEMENT OF THE PROBLEM

In this paper we are concerned with some mathematical
aspects of the behavior of a population of charged particles
under the influence of a spatially uniform D. C. (i.e., time
independent) electric field. Problems of this type appear in a
number of distinct scientific areas, e.g., in the theory of
swarms of charged particles in a neutral background gas,
in the study of “runaway” electrons in fully ionized plas-
mas,*” in the calculation of D. C. conductivity in biological
membranes,® and in semiconductor theory. In many of these
cases the charged particles of interest are electrons; however,
in some instances ions or positive vacancies are considered as
well.

Let us consider a spatially uniform dilute population of
charged particles that are initially at thermal equilibrium
with a neutral environment. Suppose that for times >0 a
uniform D. C. electric field is applied to the system. The
charged particles are accelerated by the electric field but re-
turn some of the acquired kinetic energy to the host medium
via some interaction process (collisions). The heating of the
host medium is assumed to be negligible enough for the tem-
perature of the background host medium to remain approxi-
mately time independent. Further, we assume the existence
of a balance between ionization of host particles and recom-
bination of charged particles, so that the total number of
charged particles appears to be invariant.

Two main physical situations may occur: (i) the colli-
sion process is sufficiently effective to force the velocity dis-
tribution of the charged particles towards a steady state non-
zero profile, which is usually a heavily distorted Maxwellian
at a temperature exceeding the reference temperature of the
background gas, or (ii) the collision process is not effective
in removing kinetic energy from the population of charged
guest particles, so that no relaxation of the distribution func-
tion towards a nonzero steady state distribution occurs. On
the contrary, a “travelling wave in velocity space” is genera-
ted (the so-called runaway case). In case (i) the contribu-
tion to D. C. conductivity of the guest particles is the ratio of
the magnitude of the current due to their motion (in steady
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state conditions) to the intensity of the D. C. field; in the
runaway case (ii) one does not have a (finite) D. C. conduc-
tivity, since the speed of the charged particles increases in-
definitely. In the Appendix we present two simple model
problems, based on the BGK approximation, to illustrate
the two kinds of behavior. A more sophisticated model prob-
lem has been presented by Corngold and Rollins.”

The physical aspects of the picture sketched above have
been well understood for a number of years.>* For instance,
it is recognized that the key ingredient in determining
whether a given process will involve “relaxation” [case (i) ]
or “runaway” [case (ii)] is the dependence of the collision
frequency v(v) upon the speed v of the charged particles for
large values of v. Indeed, if v(v) drops towards zero too
rapidly as v— o, the collision process can be shown? to be
unable to slow down the most energetic charged particles.
As a consequence, these particles “runaway.”

In spite of this body of existing knowledge, we feel that
the mathematical aspects of the runaway process—as op-
posed to the strictly phenomenological physical ones—still
require some study. For one thing, the approximations
adopted in the literature are often so drastic* as to make one
wonder about the reliability of the results (beyond, maybe,
an order of magnitude level of precision). On the other hand,
at a more fundamental level, even the physical outline given
above is open to some criticism. In fact, one could consider
intermediate cases [besides the cases (i) and (ii) given
above]. For instance, one could construct an ad hoc model
according to which the charged particle distribution func-
tion relaxes towards an asymptotic profile whose first (or
second) velocity moment is unbounded; then, the drift ve-
locity (or the temperature) would diverge even under case
(i) conditions. Conversely, under case (ii) conditions one
could envisage, as an alternative to the travelling wave in
velocity space, a distribution function which relaxes (uni-
formly with respect to velocity) towards zero as time grows;
under such conditions the velocity moments may or may not
converge to finite values as #— 0. Thus there are cases in
which the distinction between the runaway and the “absence
of runaway” situation becomes blurred.
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Other instances of confusion can be encountered. For
instance, one author has erroneously presented estimates of
the D. C. conductivity even in cases when the steady state
distribution fails to exist (see the cases p< — 1 in Ref. 6).

These questions have motivated the present introduc-
tory study on some mathematical aspects of the behavior of a
collection of charged particles under the influence of an elec-
tric field. At this point we would like to present some addi-
tional remarks. First of all, we recall that—as observed by
Corngold and Rollins’——much of the literature in the field
deals with the problem of a steady state population of
charged particles generated by a time independent source of
cold particles. It should be noted that the two cases men-
tioned above for the sourceless problem—namely, case (i) of
no runaways and case (ii) where runaways are present—
correspond to the impossibility or the existence of a steady
state population, respectively, when the source is present.
The sourceless point of view taken in this paper has been
described above. Another question concerns the choice of
the mathematical model to employ in the description of the
collective dynamics of the population of charged particles.
In this preliminary study we assume, somewhat artificially,
that charged particles move on a straight line parallel to the
electric field (cf. the celebrated Ka¢ model® of the Boltz-
mann equation); moreover, we usually assume that the colli-
sion process is described by a collision integral; the differen-
tial counterpart has been studied by Corngold and Rollins.”
Finally we would like to mention that one of the problems we
face is that of deciding upon the mathematical environment
to adopt. On the one hand, we may introduce an L, space of
distribution functions with at all times a finite total number
of charged particles. On the other hand, we may adopt an L,
space of distribution functions with at all times a finite num-
ber of collisions between the charged particles and the host
medium. In part for reasons of mathematical convenience,
we have made the former choice, especially as the general
solution of the time dependent problem will turn out to have
both a finite total number of charged particles and a finite
number of guest-host interactions at all times. For the steady
state problem we will be in the same rather fortunate situa-
tion, provided we assume the charged particle cross section
v{v) >0 to be nonintegrable with respect to velocity [in the
sense that ¥ *v(v)dv = + o ]. On the other hand, if the
cross section is integrable with respect to velocity [i.e., if
ST 2v(v)dv< + oo ], we will have the rather unphysical sit-
uation of a “steady state” with finite total number of colli-
sions but a nonzero particle density for infinite speed. We
will make our assumptions more precise below.

Thus let us consider the simplified linear Boltzmann
equation

9
at

/4

=(,2) + v(v)flvt)
v

(v,t) +a

+ o
=f k(o )v(0 )V, Ddv'. (1.1)

This equation describes the electron distribution f(v,) in a
weakly ionized host medium as a function of the velocity
ve( — o0, + o) and time £>0. The electrostatic accelera-
tion a is assumed constant and positive. Recombination and
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ionization effects are assumed to balance each other. The
expressions v(v) and k(v,v') denote the collision frequency
(between an electron and the host medium) and the corre-
sponding scattering kernel; accordingly, X(v,v")dv is the
probability that an electron entering the collision with veloc-
ity v will come out of the collision with its velocity in the
interval (v,v + dv). We have

k(v,v') >0,

+ o
f k(v,v")dv=1.

(1.2)
(1.3)

The electron distribution f(v,¢) and the collision frequency
v(v) must, of course, be non-negative. By reciprocity sym-
metry, we also have

v( —v) =v(v), (1.4)
k( —v, =) =k(v'). (1.5

In connection with Eq. (1.1), we will study two math-
ematical problems. In the first place we will prove the unique
solvability of the time-dependent evolution equation (1.1)
under the initial condition

S(0,0) = fo(v) (1.6)

in a suitable functional setting, as well as the non-negativity
of the solution for a non-negative initial condition, and es-
tablish the appropriate semigroup properties and bounds on
the solution. In the second place we will establish necessary
and sufficient conditions for the existence of a (unique) non-
negative solution of the corresponding stationary equation

of T NN ot
051; ) +v()f(v) = k(v 0" )v(v')f(v')dv'.
- (1.7a)

We add the plausible requirements of a finite electron con-
centration and a finite collision rate (per unit volume);
namely, we require

+

SfWdv< + «,

— o0

J ) v(v)f(v)dv< + .

(1.7b)

(1.7¢)

An additional plausible requirement is that in velocity space
there should be no electrons entering or leaking out from the
system. Since the acceleration a takes the role of “velocity”
in velocity space, we require

lim af(v) = lim af(v) =0. (1.7d)
V- — oo v— + oo
Hence
f—o)=f+x)=0. (1.7e)

Along with it we will establish under which conditions the
stationary solution can be obtained from the solution of the
time-dependent problem at f— .

In this paper we will investigate both the stationary and
the time-dependent problem, as well as the decay to equilib-
rium of the solution in the time-dependent case. The time-
dependent problem was already solved in Sec. XI11.4 of Ref.
9 as an application of the theory of time-dependent kinetic
equations of Beals and Protopopescu (see Ref. 10; also Ref.
9, Chap. XI and Sec. XI1.1-2). Here we shall give a direct
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proof based on semigroup considerations, which does not
rely on this theory. In part we shall recover a well-known
result. Note that, if the collision frequency is unbounded, the
initial-value problem cannot be treated directly within the
framework of Refs. 9 and 10; however, our proof will extend
to this case. In fact, we will develop one of the few theories of
kinetic equations where the usual cutoff leads to an un-
bounded collision frequency and an unbounded gain part of
the collision operator. Different theories of this type were
recently developed, for linearized Maxweli-Boltzmann
equations by Arlotti'' and for Fokker-Planck type equa-
tions by Cosner et al.'?

Prior to developing the proper functional formulation of
the problem, we make a number of assumptions on a, v(v),
and k(v,v"). Concerning ¢ and v we have:

Assumption (i) the acceleration a is a fixed positive con-
stant;

Assumption (ii): the collision frequency v(v) is a Lebes-
gue measurable, non-negative, and even function of v on
( — o, + o), which is almost everywhere nonzero and
Lebesgue integrable on every bounded Lebesgue measurable
set.

It is more complicated to formulate proper conditions
on k(v,v’'). On the one hand, we shall consider measurable
functions k(v,v’) on R satisfying (1.2), (1.3),and (1.5); on
the other hand, we would like to include
k(v,v') = 8(v — av’) in our description. For this reason we
shall consider the Banach spaces L, (R,dv) and L,(R,v dv)
with the norms

||fl|1=J_ wff(u)ldu,

1= vl sl

and postulate the following assumption.
Assumption (iii): The operator K which is formally rep-
resented as

(Kf) () =f k(v,v)v(V' ) f(v)dv

is a positive linear operator K: L, (R,v dv) - L, (R,dv) satis-
fying

\Kf|l =1 fll, if fEL,(R,v dv) and f >0,
as well as the reciprocity principle
(Kf)(v) = (Kg)(—v),

if flv) =g(—v) and fEL,(R,vdv).
(1.8b)

If we define the (distributional) derivative f* of a func-
tion fin L,(R,dv) by
+ + o

f(vgwdv= —

for every geC ! (R), where C ! (R) is the set of continuously
differentiable complex functions on R of compact support,
by a solution of the stationary equation (1.7a) we mean a
Junction @ satisfying

@' (v) = — (V/a)yv(w)p() + (1/a)(Kg) (v),

(1.8a)

f(v)g (v)dy,

veR,
(1.9a)
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@eL, (R,vdv). (1.9b)

Since such a solution obviously has its derivative in
L,(R,dv), each solution of the stationary problem will be
absolutely continuous on [ — b,b] for all 5> 0. We have seen
above that a physically acceptable solution ought to be non-
negative and to obey requirements (1.7b), (1.7¢), (1.7d),
and (1.7e). Accordingly, among the possible solutions of
problem (1.9) we shall be mostly interested in those non-
negative solutions @ which also belong to L, (R,dv) and sat-
isfy@( — o) = @( + o) = 0. The following theorem gives
a necessary condition for the existence of a non-negative so-
lution of (1.9) in L,(R,dv).

Theorem 1: Let a, v, and X satisfy the assumptions (i),
(ii), and (iii) stated above. Then a necessary condition for
problem (1.9) to admit a nontrivial non-negative solution
gL (R,dv) is that

+ o
f v(v)dv= + .

Proof: Let @ be a nontrivial non-negative solution of
problem (1.9). Then ¢ is continuous on R and there exists
VR such that ¢(v,) > 0. However, since X is positive, Eq.
(1.9a) yields

@) =exp[ — —‘—II—J. v(v")dv”]qo(vo)

0

a

+ Lf exp{ — LJ v(v”)dv"](ch)(v’)dv’
a Jy, v

>exp{ — —}I-J V(v")dv"]¢>(v0),

so that

lim inf¢>(v)>exp{ —if v(v")dv”]:p(vo).
a Jy,

v— + oo ,

Then geL,(R,dv) only if f7v(v")dv" = + o, i.e., only if
SIzv()dv" = + . O

Il. THE STATIONARY PROBLEM

In this section we shall discuss the stationary problem
(1.9). Throughout this section, with the exception of the
final part, we shall also make the additional assumption

+ o
f v(v)dv= + oo, 2.1

whose motivation is given by Theorem 1 above. Note that, as
a consequence of assumption (ii), Eq. (2.1) characterizes
the frequency behavior of v(v) as v— « . As observed above,
(2.1) is equivalent to

+ o
J v(v)dv = + o, for some aeR.

Our first step is to convert the integrodifferential equa-
tion (1.9) into an (equivalent) integral equation. To this
purpose, we define the following operator:

L: L,(R,dv)—-L,(R,vdv),
(L)Y (») =f iexp[ — LJ v(v")dv" ]f(v’)dv’.
—w a a Jv
On integrating Lf with respect to the measure v(v)dv and
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changing the order of integration we obtain

LAY,

+ oo v
=f (1 — lim exp{ — —l—f v(v”)dv”])f(v')dv’,
— V= + oo a Jy
f>0, (2.2)
which implies that L is a positive contraction from L, (},dv)
to L,(R,vdv) and hence LK is a positive contraction on
L,(R,vdv). Under our assumptions, if v(v) obeys (2.1),
then [|Lf}|, = || f}|, for all non-negative feL,(R,dv).
Theorem 2: If (2.1) holds, then every solution of the
integrodifferential equation (1.9a) in L {(R,v dv) is a solu-
tion of the linear stationary problem

el (R,v dv), (2.3)
and conversely. Moreover, for every solution ¢ of the two

equivalent problems we have p( — o) = @( + «) =0.
Proof’ Let @ be a solution of problem (1.9). Setting

H®w) = cxp{—l— Jw v(v’)dv'],
a Jy

o

¢ =LKgp,

where v, is some real number, we obtain from (1.9),
(Hp) (v) = (1/a)H(v) (Kp) (v), veR,

which in turn implies

Hw)p) = p(v) + i—f H(') (Kg) (v')dv',

Here we observe that the integral on the right-hand side is
finite, because H(v) is bounded on every interval of the type
( — 0,4] with 4 < + . As a result we find

vy = exp[ — %J v(v’)dv’]fp(vo)

5

+ —l—f exp[ — LJ‘ v(v")dv"] (Ke) (v")dv',
a Jy, a Jv
(2.4)

where velR. We now note that ¢ is of bounded variation on R,
due to the fact that ¢ 'eL, (R,dv). This obviously implies the
boundedness of ¢ on R. Letting v, tend to — o and taking
account of (2.1) in combination with the boundedness of ¢,
we must have ¢( — o) =0 by dominated convergence.
Similarly, if v,— + oo, we get @( + o) = 0. Thus any solu-
tion ¢ of problem (1.9) obeys ¢ = LK, withg( + «) =0.

Conversely, directly from the explicit form of LKy,
every solution of Eq. (2.3) in L,(R,v dv) is absolutely con-
tinuous on [ — b,b] for all b > 0 and of bounded variation on
( — o, 4+ o). Moreover,

2 (LKp) () = L (K@) (1) — L v(0) (LKg) (v)
dv a a

and the right-hand side belongs to L, (R,dv); hence the solu-
tion @ of Eq. (2.3) satisfies Eq. (1.9a). O

Theorem 3: If condition (2.1) is satisfied, then the set of
all @ satisfying problem (2.3) is at most one dimensional
and, when nontrivial, contains a nontrivial non-negative
function.

Proof: Let us suppose that Eq. (2.3) admits solutions.
Then every such solution is non-negative, apart from a con-
stant factor. Indeed, if ¢ = LK@ for some gL (R,v dv),
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one first chooses @ real. We then have
lg| =LKg <LK |p|,
while

+ oo

v (LK | |) (v) — |@(v)|}dv

=|ILK g Il — llell.

=|[Klelll —lell.

=lell. —llell, =0.

Hence|p | = LK |@ | andtheexistenceofanontrivial solution
of Eq. (2.3) in L (R,v dv) implies the existence of a nontri-
vial non-negative solution of Eqs. (1.9) in L,(R,vdv). In
fact, if the solution @ is real, then || LK{|¢ | + ¢}||, = Oand
LK{|¢| + ¢} ={|@| + ¢} imply that ¢ does not change
sign.

Finally, if ¢ is a nontrivial non-negative solution of Eq.
(2.3) in L,(R,vdv) and @(v) =0 for some veR, then
(LK) (v) =0 yields (Kg)(¥')=0 for v'<v and hence
p(")y=(LKp)(w")=0 for all v"<v. Putting v,
= sup{veR: p(v”) = Ofor all v” <v} we find @(v) > 0 for all
V> U, since otherwise ¢ (v) would vanish for some v > v,.
Thus if ¢, and @, are two different non-negative solutions of
Eq. (2.3) of unitnormin L, (R,v dv), then (¢, — @,) will be
a nontrivial real solution of Eq. (2.3), which must have con-
stant sign. Since both ¢, and ¢, have unit norm in

L,(R,vdv), we obtain |@, —@,ll, =ll@l. —llell. |,
which is a contradiction. Hence the solution space of Eq.
(2.3) is at most one dimensional. O

Let ¢ be a nontrivial non-negative stationary solution in
L,(R,dv). Then, apparently, either ¢(v) > 0 for all veRt or
@(v) =0 for v<y, and @(v) > 0 for v> v, where v, is some
real constant. In the latter case we have (Kg) (v) =0 for all
U < Vg, as a result of the equation ¢ = LKg. Since, by as-
sumption, v(v) does not vanish on a set of positive measure,
we must then have k(v,v") =0 for all v < v, and v’ > v,

Theorem 4: If condition (2.1) is satisfied and if, in addi-
tion, LK is a weakly compact operator on L,(R,v dv), then
the stationary problem has a unique non-negative solution in
L,(R,v dv) of unit norm.

Proof: If condition (2.1) is satisfied and fis non-nega-
tive, we have | LKf||, = || f||,- Consequently, the spectral
radius of LK, spr(LK), is one. Moreover, (LK)? is compact
as an operator on L, (R,v dv), because the square of a weakly
compact operator in L, is compact. Then the compactness of
(LK)? in combination with spr(LK) = 1 implies the exis-
tence of at least one non-negative @eL,(R,vdv) of unit
norm such that Eq. (2.3) holds true (see Ref. 13, Chap. 2).
By the previous theorem this solution is unique. 0

Corollary 5: Let condition (2.1) be satisfied. If the oper-
ator

+ o
(Bf)(v)=J k(o) A0 Yo'

is weakly compact on L, (R,dv) then the problem (2.3) hasa
unique non-negative solution of unit norm.

Proof: If the above operator B is weakly compact on
L,(Rdv), then LK=LBv 1is weakly compact on
L, (R,vdv). Here we observe that v is a bounded operator
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from L,(R,v dv) into L, (R,dv). The result follows directly
from the previous theorem. (m]

We now consider some simple models for the collision
term. They satisfy the assumptions we formulated to ensure
the existence of stationary solutions.

Example 1 [ The Bhatnagar—Gross—Krook (BGK) mod-
el]: The idea behind this model is the assumption that the
average effect of collisions is to provide a “source” which is
proportional to the deviation of the distribution function
Sf(v) from a Maxwellian f,, (v). Thus the collision term is
assumed to take the following form:

+ o0
f k(v0)v(v' ) Av)dv'

+ o
= v(v)Fm(v)J v(V') f(v')dvY, (2.5)
where
F,(v) = I ) .
SE2v)f, (W)adv

In this case, the operator K defined by (2.5) is a compact
operator from L, (R,v dv) to L,(R,dv). Hence, if condition
(2.1) is satisfied, the results of Theorem 4 hold true. In the
Appendix we will give a more elaborate account of the BGK
model. For a discussion of the reliability of the BGK model
in the transport theory of charged particles see, for instance,
the paper of Corngold and Rollins." 0O

Example 2: Consider a particular class of integral ker-
nels k(v,v’'), which is a finite linear combination of functions
separated in the variables v and v'. A kernel of this type is
said to be degenerate and can be written in the form

k') = v(0)f (0)f,, () 3 a4, (v'), (2.6)
i=1

where ¥, and @, are given functions and the o, are suitable
positive accommodation coefficients. In the literature of the
kinetic theory of gases this model is known as the generalized
BGK model and is obtained by generalizing the linearized
BGK model. If we suppose the functions @, and ¥; to be
essentially bounded, the operator K defined by (2.6) and
(1.8) is a compact operator from L,(R,vdv) into

L,(R,dv). O
Example 3: Consider the integral kernel defined by
1/2r, ve[ —rr], veR,
k s ') = .
el {O, otherwise.

Then the integral operator B defined by the above kernel has
the property that for every € > 0 there exists § > 0 such that

f CBFY(0 + B) — (BF ) () |dv <€

for every fbelonging to a bounded subset of L,(R,dv) and
every h with |h|<&8. Moreover, there exists a subset
[ — r,r] CGCR such that

[ Janoed<e,
R\G

is trivially satisfied for every € > 0. From Theorem 2.1 of Ref.

15 it follows that B is compact on L,(R,dv). By virtue of -

Corollary 5, we have a stationary solution if
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fr2v()dv' = + . More generally, we may replace
k(v,v') with a bounded continuous non-negative function
with supporton [ — r,7] X R. A sufficient condition for com-
pactness will then be the existence, for every € > 0, of a num-
ber § > 0 such that

+r
f |k(v + Av') — k(v')|dv<e

for |4 | <8, uniformly in ¢’ on R. a

In the remaining part of this section, we consider the
case when the behavior of the collision frequency v(v) at
infinity is such that condition (2.1) is not satisfied. In other
words, from now on in this section, we replace (2.1) by the
alternative assumption

+
f v(v)dv< + . 2.7)

If condition (2.7) is satisfied, then |Lf||,
< (1 — 8)|| £, for all non-negative feL,(R,dv) where

1 + o
5= exp[ - —a—f v(u’)dv’] >0.
In this case dominated convergence applied to Eq. (2.4)
yields the existence of the continuous limits @( + « ),
whence the integrodifferential equation (1.9) can be put in
the equivalent form

@(v) — (LKg)(v) = exp{ - -}I-J v(v’)a’v’](p( — ).
T (2.8)

As a result we find that ¢( + « ) are finite, while an easy
integration of Eq. (1.9) over Ryields ¢( — o) = @( + o).
Now the integral equation to be investigated is Eq. (2.8).
Equation (2.8) is uniquely solvable in L, (R,v dv), which is
easily seen from the norm estimate

ILKp|l,<(1 = B)|Kp | =1 =gl

where 5€(0,1). We summarize the result as follows.

Theorem 6: If condition (2.7) is satisfied, then the sta-
tionary problem (2.8) has a unique non-negative solution ¢
in L, (R,v dv) of unit norm with ¢( — « ) =@( + « ) >0.

Remark: Note that the solution of (2.8) under assump-
tion (2.7), which is referred to in Theorem 6, is physically
irrelevant, since it corresponds to an infinite population lev-
el.

It is possible to give necessary and sufficient conditions
for the existence of a stationary solution in L,(R,v dv) in
terms of the spectral properties of LK. The stationary solu-
tion will be unique apart from a normalization factor. If con-
dition (2.1) holds true, the necessary and sufficient condi-
tion is that 1 is an eigenvalue of LK. The corresponding
eigenfunction will then be non-negative. In particular, if
(LK)" is compact for some neN, there will be a stationary
solution. On the other hand, if condition (2.7) is satisfied,
there always exists a unique non-negative stationary (un-
physical) solution in L,(R,vdv) of unit norm, because
spr{LK) < 1; its values at + oo are equal and positive.

Instead of Egs. (2.3) and (2.8) on L, (R,v dv), we may
also study the equivalent equations

¥— KLy =0, (2.9)
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Y- KLY =¢( — »)Ko,
on L,(R,dv), where

w(v) =expl — —l-f v(v")dv”}.
a - o0

In fact, if @ is a (non-negative) solution of Eq. (2.3) in
L,(R,vdv), then Kp is a (non-negative) solution of Eq.
(2.9) in L, (R,dv); conversely, if 1 is a (non-negative) solu-
tion of Eq. (2.9) in L,(R,dv), then Ly is a (non-negative)
solution of Eq. (2.3) in L, (R,v dv). Moreover, in this man-
ner nontrivial solutions of Eq. (2.3) in L,(R,v dv) corre-
spond to nontrivial solutions of Eq. (2.9) in L,(R,dv). A
similar connection exists between solutions of Eq. (2.8) in
L,(R,vdv) and solutions of Eq. (2.10) in L,(R,dv), but
now Kg is a solution of Eq. (2.10) if ¢ is a solution of Eq.
(2.8),while@( — o )w + Lipisasolution of Eq. (2.8) if ¢is
a solution of Eq. (2.10). However, since in general the oper-
ator K does not map absolutely continuous functions of
L,(R,v dv) into continuous functions, the solutions of Egs.
(2.9) and (2.10) need not be continuous. On the other hand,
if K (or the above operator B) has finite rank, it is much
easier to solve Egs. (2.9) and (2.10) than to solve Egs. (2.3)
and (2.8). Finally, it should be observed that the nonzero
spectra and eigenvalue spectra of LK and KL coincide.

(2.10)

il. THE TIME-DEPENDENT PROBLEM

In order to study the time-dependent problem, we shall
analyze the operator

(Tf)(v) = —a% — v()A) + (Kf) (v)

on the intersection .# of L,(R,dv), L,(R,v dv) and the set
of functions which are absolutely continuous on [ — b,b] for
all b> 0, are of bounded variation and vanish at — . We
shall prove an extension of T" to be the generator of a strongly
continuous semigroup on L, (R,dv) using the Hille-Phillips
theorem. For this purpose we solve the equation

A-Df=g (3.1)

for fe.#, where g is an arbitrary function in L,(R,dv) and
A >0. We obtain

f=L,Kf+L,g,
where

(3.2)

(Lif)(v)
=lJ. exp[ — if [v(")y + 4 ]dv"]f(v’)dv’.
a - oo a v

The derivation of Eq. (3.2) is the same as the derivation of
(2.3) with v(v) replaced by v(v) + 4, since for 4 >0 the
integral § * *{v(v) + A}dvis infinite. As a result we obtain

WLy +ANLAN =1 f20. (3.3)
Here we have replaced v(v) by v(v) + 4 in the identity
ILFNl = |} £l for f> 0. This is allowed, since L, f coincides
with Lf on replacing v(v) + A. Consequently,

\LLKf Nl + AL ESf N =1 fll., f20, (3.4)
whence L,; maps L,(R,dv) and L, K maps L, (R,v dv) into

1182 J. Math. Phys,, Vol. 30, No. 5, May 1989

the intersection of L,(R,dv) and L,(R,v dv). Hence for ev-
ery A >0and geL,(R,dv) thesolutions fof Eq. (3.2) belong
to this intersection.

Theorem 7: For every A > 0 and geL, (R,dv) there exists
a unique solution 7,g of Eq. (3.2), which belongs to
L, (R,dv). Then T, is the resolvent of a strongly continuous
positive contraction semigroup {S(#)},, on L,(R,dv)
whose generator G is a closed extension of 7. Moreover, the
semigroup {S(#)},,, satisfies

ISOflle= £l >0,

if and only if G is the (minimal) closure of T.
Proof: Put

(3.5)

T.g= 3 (L,K)"L;g, geL,(R.dv).

n=20

Then for g>01in L,(R,dv) Eq. (3.4) implies
ALK Lyglly =1L K)" " Lagll,
— (LK) L,gll.»
n=1,273,..,
and therefore for g>0

T2l = X (LK) Lagll = [ILagll,
n=0

1 1
+ 7“1%3”1; - 7ﬁ1 (L,8)

1 1 1
7 ligll — Iﬁa(lf&g) <7”g”1-

Here

Bi(f)= lim LK) fll,, O<feL,(R,vdv),

extends uniquely to a positive linear functional of
L,(R,vdv). Thus there exists a non-negative function
@.€L  (R,vdv) such that

Ba(f)=f v(u)f()e, (v)dy, feL,(R,vdv).

Since obviously B, (L, Kf) = B, ( f) for all feL ,(R,vdv),
we have (L;K)*p, = ¢,, where the adjoint is defined on
L_(Rvdv).

To prove that 1 is not an eigenvalue of L, K, suppose
¢(A) is an eigenvalue of L, K. If ¢ is a corresponding eigen-
function, then

lcORlell, +Allelld=IL:Kell, + AL, Ke ||,
<ILiKlelll, + ALK @ |l

=lllelll, =lel.,
which implies that |[c(4)|<1. Moreover, |c(4)]+#1, since
otherwise |[@ ||, =0 and thus @ = 0. Thus f= T, g is the
unique solution of Eq. (3.2) in L, (R,dv).

Clearly, T, is the resolvent of a bounded strongly con-
tinuous positive contraction semigroup on L,(R,dv), i.e.,
T, =(A—G)"!, where G is the generator and
D(G) = Ran T, . Moreover,

Tlg=f e-US(ngdt, g>0in L, (Rdv),
0
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while

IT.gll, + (/) B, (Lg) = (1/1)|lgll,, &>0 inL,(Rdv).
Thus if 1¢0,(L,K), the residual spectrum of L;K, and
hence 1¢0,((L;K)*), we have 5, (L, g) = Oand therefore

(T.gll, = (1/A4)||gll;, £>0in L,(R,dv).

Hence

ISl = llgll,, &>0in L, (R.dv).

Conversely, if the last two equations are true, 5, (L;g) =0
forallg>0inL,(R,dv). Since {L,g: g¢L,(R,dv) } isdense in
L,(R,vdv), we get ¢; = 0and hence 140, (L;K).
If Eq. (3.5) is true and l¢o,(L;K), then 1 — L K
maps L,(R,v dv) into a dense subspace of L,(R,v dv) and
Eq. (3.2) can be solved in .# for all ge&, where & is a
suitable dense subset of L,(R,dv). For every geL,(R,dv)
and €> 0 we then choose g, such that ||g — goll, <€l /
(A + 1) so that
T, [g*‘go]“1<€/(/l +1).
Therefore f = T, geD(A — G) can be approximated by some
Jo = T,8.,# such that
| f=Kolli + A = G f — (A = Dfl,

= ”f‘fo”l + lig —glli <€

Consequently, (4 — G) is the closure of (1 — T). On the
other hand, if (A — G) is not the closure of (4 — T, there
exist geL, (R,dv) and €> O such that

IT.g—fll+ lg— (A —Dflli>e fetkt.
Hence if f=3Y_,(L,K)"L,g, we have
7% (KLA)N+1g||l + ||(L/1K)N+lg”1>€-

By choosing NV large enough, the first term can be made arbi-
trarily small, because the series defining T'; g converges abso-
lutely in L,(R,dv). But then

Bi(®) = lim (L, KON 'gll 1>

whence leo, (L, K). O

Remarks: (1) If there exists a nonzero stationary solu-
tion @, then @ >0 apart from a constant factor, S(#)p =g and
AT, p=¢. But then 3, (L, ¢) = 0 and hence 5, = 0, which
implies that 1¢o, (L, K) for all 4 > 0. Consequently, the exis-
tence of a nonzero stationary solution implies (3.5).

(2) Another case when (3.5) is true occurs if v(v) is
essentially bounded. In that case ||g||, <||v|. |lgl}, for all
geLl,(R,dv) CL,(R,vdv) Thus if {@, }=_, is an increas-
ing sequence in (0,1) with limit 1, then
foo=1 —a, LK) 'L,geD(T), increases with m if g0
and satisfies

A-Df,=g— 1 —a,)Kf,.

Asaresult, || f— f,.||,—0 as m— . On the other hand,
lg — (4 —Df Iy

= (l _am)“Kfm”1<(1 - am”Vm” v

<(1 —a,, )“V”m “fm ||l’

which vanishes as m— oo. Consequently, JSED(G) and
(A — G)f=g. Moreover, G=T.

1183 J. Math. Phys., Vol. 30, No. 5, May 1989

(3) If v(v) is integrable, then |L, K ||<|[LK ]| <1 on
L,(R,vdv). Then leo, (L, K) and Eq. (3.5) must be satis-
fied. This is also the case if KL; is weakly compact on
L, (R,dv) [or L, K is weakly compact on L, (f,vdv)]. The
reason is that power compact operators do not have a residu-
al spectrum.

(4) In general, T'is not a closed operator and hence G is
a proper extension of 7. This is, for instance, the case if
k(v,v') = 8(v —v') and v(v) is not essentially bounded. In
this case (Tf)(v) = — a(df/dv ) defined on .# while .#
does not coincide with the (generally) larger domain of the
generator of the semigroup {S,, _, () },,0 on L,(R,dv) de-
fined by (S;.-0(£)g)(v) =g(v—ar). However, if
spr(L;K) <1 [which occurs, for instance, if KL, is weakly
compact on L, (R,dv) or if v(v) is integrable], we can easily
prove that T, maps L,(R,dv) into .# and therefore that
G=T.

Suppose there is a nontrivial non-negative stationary so-
lution @ in L, (R,dv) Then, as known, either ¢(v) > 0 for all
veR or @ (v) = 0 for vy, and @(v) > 0 for v> v, In order to
derive some properties of the semigroup {S(#)},,, in the
latter case, we consider the free streaming semigroup
{So(t)},>0 on L,(R,dv) generated by the operator
Ty,= — (a(d /dv) + v(v)) on the domain D(T,) = .#.
Then {S,(#) },, is a contraction semigroup whose generator
satisfies

(/'L—TO)_‘g=L,1g=f e~ MS,(t)gdt, Re A>0.
[0}

(3.6)
It is possible to write down S4(#) in closed form. In fact,
(So()g)(v) = M(t,v)g(v — at), (3.7)
where
M(ty) = exp[ — lf v(v’)dv’]. (3.8)
a Jv—ar

Hence ||S,(2)|| = ess sup {M(z,v): veRr}, so that the type
wo(S,) of the semigroup {S,(#)},., is given by

@o(Sy) = lim (1/1)log ess §up M(ty). (3.9)
{— o0 ve

Since in an L, space the type and the spectral bound of a

positive semigroup coincide (see Ref. 16), we may extend

(3.6) to all Re A > wy(S,). Writing (R, &) (v) = exp{iav/

a}g(v) we have for A = o + it with o, 7eR
L,=R,7'L,R,,

while ||L,g||, increases monotonically as o decreases from

+ oo to — oo for all non-negative geL,(R,dv). Hence
o(Ty) = {AeC:Re A<wy(S,) }

whenever @y(S,) > — w0, while o(7,) =9 whenever
@o(S,) = — . We now observe that

[(A-G)"'—(A~T) " 'lg
=[T,—L,]g= i (L,K)'L,g

n=1
implies that, for all ReA>0, [T; — L, ]g =0 for all g of
support within [vg, 0 ). Since
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[T, —L,Jg:Jm e MS(1) — So(N]gdt, ReA>0,
0

we find that [S(z) — S,(¢) ]g = 0 for all g of support within
[ves 20 ). For later use we also mention that

hm ”SO(t)gnl = O) geLl(msdv)

as a consequence of (3.7), (3.8) and the nonintegrability of
v(v).

We call {S(#)},,, mean ergodic if for every
geL,(R,dv) there exists a vector PgeL,(R,dv) such that

17,18

lim (3.10)

l— w0

1
—l—f S(t')gdt’—Pg“ =0.
t Jo t

It then follows that P is the (bounded) projection of
L,(R,dv) onto the fixed space

F = {geL,(R,dv): S(t)g = g for all t>0}
of the semigroup {S(#)},,, along the space
g= span{[1 — S(?)]g:t>0, geL,(R,dv)}.
Theorem 8: Suppose there is a nontrivial stationary solu-
tion @ in L, (R,dv). Then the semigroup {S(#)},., is mean

ergodic and the limit Pg is a one-dimensional projection of
the form

(Pg)(v) = a(g)p(v), vel, (3.11)
where

a@) = [ pgwrdv
for some non-negative function yel_ (R,dv) with

l#ll., < + 0 and § £ 2 (v )@(W)dv = 1.

Proof: First, if G is the generator of {S(¢)},,0, then
F = {geL,(R,vdv): Gp = 0}. Thus, if G = T, then F co-
incides with the set of stationary solutions in L, (®,dv). Now
recall that @ is continuous and suppose that ¢ does not have
(finite) zeros. Then 0<S(#)@ = ¢ for all >0, and the mean
ergodicity of {S(#)},,, is immediate from Ref. 18 (Corol-
lary 1 of Theorem V 8.4).

Next, suppose @ has a finite zero. Then there exists v,eR
such that ¢(v)=0on ( — o0,¥,] and @(v) >0 on (vy, ).
Then (K@)(v)=0 on (— «, v,], and therefore
(Ku)(v)=0 on ( — oo,U] and for all characteristic func-
tions u of compact support within (v, o ). Since every non-
negative function in L, (R,v dv) of support within [vy, « ) is
the monotone limit of a sequence of finite linear combina-
tions of characteristic functions of compact support within
(vgy0), we have (Ku)(v}=0 on (— «o,,) for all
ueL (R,v dv) of support within [v,, 0 ). Thus K leaves in-
variant the closed invariant ideal in L,(R,v dv) of functions
with support in [v,, 0 ). Then, by the second paragraph fol-
lowing the proof of Theorem 7, this must also be the case for
S(2). We may now restrict S(¢) to L,([v,, « ),dv) and apply
the same corollary in Ref. 18 to get the ergodicity of the
reduced semigroup. From the ergodicity of the reduced se-
migroup and the special form of ¢ we immediately have the
ergodicity of the full semigroup {S(#)},.,.

Finally, as the stationary problem has at most one lin-
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early independent solution in L, (R,v dv), we easily obtain
the specific form (3.11) of the projection P. O

IV. DECAY TO EQUILIBRIUM

In this section we shall prove that under certain quite
natural conditions the solution of the time-dependent prob-
lem converges in the norm of L, ({R,dv) to a solution of the
stationary problem. Obviously, one of these conditions is
that there exists a nontrivial stationary solution in L, (R,dv).
The other condition is that the generator G of the time evolu-
tion semigroup {S(#)},,, of Eq. (1.1) does not have purely
imaginary eigenvalues. Of course, the second condition is
suggested by the fact that if /o is a purely imaginary eigenval-
ue of the generator G and g is a corresponding eigenfunction,
then the solution of Eq. (1.1) with initial condition g has the
form

S(tH)g=e""g
and therefore does not converge at t— oo .

More specifically, if the generator G of the semigroup
{S(#)},., has purely imaginary eigenvalues, then under cer-
tain conditions one may prove that every solution S(#)g of
the time-dependent problem converges in the strong topol-
ogy of L, (R,dv) to a periodic function (cf. Ref. 19, Theorem
C1V 2.14). Indeed, suppose that A = 0 is an isolated eigen-
value of Gand that iaeo, (T') for some nonzero real . Let us
also suppose that the distribution kernel k(v,v’) does not
vanish on a set of positive measure, so that the semigroup
L,(R,dv) isirreducible (i.e., does not have nontrivial closed
invariant ideals). Then the spectrum of G on the imaginary
line consists of a sequence {ina}?_ _ _ of simple eigenval-
ues. On denoting by Q a suitable projection of L, (R,dv) onto
the closed linear span of the corresponding eigenfunctions,
we obtain

lim |S(1)g — ¢"'Qg], = 0

for some period y > 0.

Assume now that there are no purely imaginary eigen-
values and that a nontrivial stationary solution exists.

In order to establish the decay to equilibrium we shall
apply the 0-2 law for positive semigroups in L, spaces (see
Ref. 19, Theorem C IV 2.6 plus corollary), which may be
formulated as follows. Let {S(#) }, be a positive semigroup
on the Banach space L, (E,Z,u) and let e(u) be a non-nega-
tive function in the kernel of its generator which does not
vanish on a set of positive u4 measure. Then for every 7>0
there exists a partition of E into two u-measurable subsets
E,, and E, with the following properties:

(1) For every t> 0O the closed ideals of all functions in
L,(E,Z,u) having their support on E,, and E,_,
respectively, are invariant under S(z).

(2) |S(1) —S(t+1)|ey, l0as t—> 0.

(3) [S(2) — St + 7)|e,, = 2e,, for all 1>0.

Here ¢,, = ey,, and e,, = ey,., where y,, and y,, de-
note the characteristic functions of E,, and E,,, respective-
ly.

Moreover, if the point spectrum o, (G) of the generator
G of {S(n},,, satisfies g,(G)N{ReA =0} ={0}, then
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S(2)g converges in L,(E,2,u) strongly as t— e for all
gelL,(E,Z,u) that vanish on E,, .

Theorem 9: Suppose there is a nontrivial stationary solu-
tion @ in L, (R,dv), while G does not have purely imaginary
eigenvalues. Then

3im||S(t)g—Pg||, =0, geL,(R,dv), (4.1)
where P is the projection given by (3.11).
Proof: As a result of the previous section we may write

0

T,8= E (L,K)"L,g, Re A>0.

n=0

From this equality we easily derive that the closed invariant
ideals of T, in L,(R,dv) are ideals of all functions in
L,(R,dv) that have their support in [v,, 00 ) for some v,eR.
This in turn implies that for all 7>0 one of the sets E,, and
E,. in the 0-2 law has zero measure.

First suppose E,. = R. Then ¢,, =0 and e¢,, = ¢ and
hence

IS(1) —S(t+ 1)@ =20 ={S(1) + S+ N}p, ©0,

which is impossible. Indeed, there is a sequence of functions
g.€L,(R,dv) with |g,|<e@ such that for every €> 0 there
exists n,eN such that for n>n, and for >0

({S) + St + 7 }p)w)
<({S(t) =St +7m)}g,)(v) +€ veR.
Writing g = sup ( + g,,0) we have
(S [@—g. 1N +(S(H)g, ) (w)
+(SC¢+ 1) [e—g, VW) +(S(t+ g} )(v)<e.

If g+ =0, then |g,| = g7 <@ yields ¢(v)<e for all veR,
which is a contradiction for sufficiently small €. Consequent-
ly, E,, =R for all 7>0, which implies that for every

geL,(R,dv)
tlim |S()g — Qgll, =0

for some vector Qg (cf. Ref. 19 Corollary to Theorem C IV
2.6). But then the inequality

IS(7) — Qgll,<[IS(m) — 1| |IS(H)g — Ogll,
+ I[S¢t+ 7) — S gl

implies Q = P, which completes the proof. a

Remarks: (1) If the generator G # T, then there are no
nontrivial stationary solutions (see Remark 1, after
Theorem 7). On the other hand, if G = T, then T, is bound-
ed as an operator from L ,(R,dv) into L,(R,v dv). Then

T/l =L,{ +LAKT,{, /1>0, (4.2)
implies the Duhamel formula
S(1) = S,(1) +J So(t — T)KS(7)dT. (4.3)
(4]

Now, if @ is an eigenfunction to the imaginary eigenvalue id
of T and hence S(¢)p = e*'p and S(¢)|p | = |@ | (see Na-
gel,'® Corollary 2.3 on p. 297), we find, following an argu-
ment by Arlotti,°
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t

etp =Sy (e + f e*'So(t — 1)Ko dr
0
and

@] =So(t)le | + f Solt — DK | |dr.
0

A simple comparison of the L, norms yields ¢ >0 and A = 0.
Hence if G = T [ which occurs if v(v) is integrable or if L ; K
is weakly compact on L,(R,v dv) ], G does not have purely
imaginary eigenvalues. Finally, if v is essentially bounded,
then ||Kg||,<||¥|l.. l|g|l; implies Egs. (4.2) and (4.3). We
may then repeat the above reasoning and conclude that
G =T does not have purely imaginary eigenvalues.

(2) If we consider the case k(v,0’) = 8(v — v') where
[S(t)gl(v) =g(v—at) and hence G = T, we see that
@(v) = exp{ — ilv/a} seemingly is an eigenfunction of S(#)
corresponding to the eigenvalue e*'. However, g¢L, (R,dv),
though e, (R,v dv) if v is integrable.
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APPENDIX: AN ILLUSTRATIVE EXAMPLE

The object of this Appendix is to illustrate—with the
help of two simple model problems—the typical patterns of
behavior that one may expect from a population of charged
particles moving through a host medium under the influence
of a D.C. electric field. We shall consider two distinct ver-
sions of a simplified one-dimensional BGK model. A paral-
lel and more sophisticated treatment has been proposed by
Corngold and Rollins’ who have adapted a one-dimensional
Fokker-Planck model.

One simplified model is represented by the kinetic equa-
tion

Fo) +aLwn = v(){e()f,, () — flv,},
at av
veR, >0, (A1)
where
z d
c(?) = 52 o v()fv,n)dv

52 v, (v)dv

is a normalization parameter, and f,, (v) =JB/7
X exp( — Bv?) is the normalized Maxwellian with

W) = fx v, (v)dv=(2B8)" "
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We consider the two following cases:

(1) v(v)=v>0,

Vo, — WLULKW,

0, [v|>uw,

where w and v, are positive constants. Note that

(i) v(v) = [ (A2)

f v(v)dv= + o
in case (i) whereas
O<f v(v)dy =2vow < + oo

in case (ii). Moreover, note that in case (ii) assumption (ii)
is violated. We shall study the typical problem of the time
evolution of a swarm of guest particles following the switch-
ing-on of the acceleration field at time ¢=0, with
S(0,0) = £, (v).

It is easy to establish the following results.

Case (i): Here f(v,t) relaxes towards a steady profile. In
fact, one can show that

fot) =f. ) + Lexp(—r) L £, (—an),
Yo dv
where
£ V) = (v/2a)exp{ — B(v* — A ) }erfc(AVB),

with A = — v+ (vo/2a83)

and f(v,t) »f_ (v),a8t— + .
Now we introduce the normalized velocity moments
My (2) which are defined by

() = fm v"f(v,t)dv(Jm f(v,t)dv) T k=012,
Then it is ea:y to show that i
X)) =p, (1)
= (a/vp){1 — exp( — vpt) } ~a/vy,

Further
W) (1) = u,y(0)

= (1/48) + (a/vo)* {1 — (1 + vo)

X exp( — vpt) } ~ (1/4B8) + (a/v,)?, ast— + .

ast— 4 oo.

Accordingly, for thermal agitation (relative to average ve-
locity) we have

(D) () — ()2 (D)~ 1/4B + 1(a/vy)?, ast— + oo.

In this case there is no runaway process.

Case (ii): For problem (A1) subject tc (A2) and to the
initial condition f(v,0) = f,, (v), it is obvious that, within the
quadrant v>w, >0, the solution f(v,) remains constant
along the characteristics v = U + as, £ =5 (5>0). Accord-
ingly, we can write
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f(§+at,t) :gl (5) — [fm(v)y U}w

flw,(w-—-"7)/a), w-—-at<v<w,

where 0. Therefore,
SO+ att)y~g_  (V), as t—> + o, UeR,

i.e., there is convergence towards a travelling wave. Note
that this is not an explicit expression.

We can summarize the results as follows. Under case (i)
conditions [for which §* _v(v)dv= + o] there are no
runaways and the distribution function relaxes towards an
asymptotic profile f_ L, (R,dv) NL,(R,v dv) whose veloc-
ity moments are finite. Note that, in this case, if cold charged
particles were fed continuously into the system, then the dis-
tribution function would not relax towards a steady state
value. However, in both situations the velocity moments
would relax towards finite values.

On the contrary, in case (ii) [for which
O0<f=_ v(v)dv< + ] f(v,t) converges towards a *‘tra-
velling wave™ and all velocity moments diverge as t — + oo.
Under steady feeding, the velocity moments would diverge
as t— + oo, whereas f(v,t) would converge to a steady pro-
file belonging to L, (R,v dv); however, this profile would not
belong to L, (R,dv).

'K. Kumar, H. R. Skullerud, and R. E. Robson, Aust. J. Phys. 33, 343
(1980); K. Kumar, Phys. Rep. 112, 319 (1984).

2G. Cavalleri and S. L. Paveri-Fontana, Phys. Rev. A 6, 327 (1972).

*H. Dreicer, Phys. Rev. 115, 238 (1959); 117, 329 (1960).

“E. M. Lifshitz and L. P. Pitaesvkii, Physical Kinetics, Volume 10 of the
Landau and Lifshitz “Course of Theoretical Physics” (Pergamon, New
York, 1981).

3V. V. Parail and O. P. Pogutse, “Runaway electrons in a plasma,” Reviews
of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New
York, 1986), Vol. 11.

*M. C. Mackey, Biophys. J. 11, 75 (1971).

'N. Corngold and D. Rollins, Phys. Fluids 29, 1042 (1986); 30, 393
(1987).

¥M. Kad, “Foundations of kinetic theory,” in Proceedings of the third
Berkeley Symposium on Mathematical Statistics and Probability, edited by
J. Neyman (University of California Press, Berkeley, 1956), Vol. III,
pp-171-197.

®W. Greenberg, C. V. M. van der Mee, and V. Protopopescu, Boundary
Value Problems in Abstract Kinetic Theory (Basel, Birkhauser, 1987),
Vol. 23.

'OR. Beals and V. Protopopescu, J. Math. Anal. Appl. 121, 370 (1987).

YL, Arlotti, J. Diff. Eqs. 69, 166 (1987).

12C. Cosner, S. M. Lenhart, and V. Protopopescu, SIAM J. Math. Anal. 19,
797 (1988).

M. A. Krasnoselskii, Positive Solutions of Operator Equations (Groning-
en, Noordhoff, 1964) [Fizmatgiz, Moscow, 1962 (Russian)].

“R. E. Robson, Aust. J. Phys. 28, 523 (1975); 29, 171 (1976).

'SR. A. Adams, Sobolev Spaces (Academic, New York, 1975).

'R. Derndinger, Math. Z. 172, 281 (1980).

'7E. B. Davies, One-parameter Semigroups (Academic, New York, 1980).

""*H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren
Math. Wiss. (Springer, Berlin, 1974), Vol. 215,

'°One-parameter Semigroups of Positive Operators, Lecture Notes in Math-
ematics, Vol. 1184, edited by R. Nagel (Springer, Berlin, 1986).

20L. Arlotti, Proceedings of the Conference on Transport Theory, Invariant
Imbedding, and Integral Equations in honor of G. M. Wing’s 65th birth-
day, Santa Fe, 1988, to appear.

Frosali, van der Mee, and Paveri-Fontana 1186



	JMP, Volume 30, Issue 05, Page 0957
	JMP, Volume 30, Issue 05, Page 0965
	JMP, Volume 30, Issue 05, Page 0970
	JMP, Volume 30, Issue 05, Page 0981
	JMP, Volume 30, Issue 05, Page 0993
	JMP, Volume 30, Issue 05, Page 1000
	JMP, Volume 30, Issue 05, Page 1007
	JMP, Volume 30, Issue 05, Page 1009
	JMP, Volume 30, Issue 05, Page 1013
	JMP, Volume 30, Issue 05, Page 1016
	JMP, Volume 30, Issue 05, Page 1018
	JMP, Volume 30, Issue 05, Page 1030
	JMP, Volume 30, Issue 05, Page 1034
	JMP, Volume 30, Issue 05, Page 1039
	JMP, Volume 30, Issue 05, Page 1043
	JMP, Volume 30, Issue 05, Page 1053
	JMP, Volume 30, Issue 05, Page 1060
	JMP, Volume 30, Issue 05, Page 1073
	JMP, Volume 30, Issue 05, Page 1077
	JMP, Volume 30, Issue 05, Page 1081
	JMP, Volume 30, Issue 05, Page 1095
	JMP, Volume 30, Issue 05, Page 1100
	JMP, Volume 30, Issue 05, Page 1103
	JMP, Volume 30, Issue 05, Page 1115
	JMP, Volume 30, Issue 05, Page 1117
	JMP, Volume 30, Issue 05, Page 1122
	JMP, Volume 30, Issue 05, Page 1133
	JMP, Volume 30, Issue 05, Page 1140
	JMP, Volume 30, Issue 05, Page 1150
	JMP, Volume 30, Issue 05, Page 1158
	JMP, Volume 30, Issue 05, Page 1161
	JMP, Volume 30, Issue 05, Page 1164
	JMP, Volume 30, Issue 05, Page 1171
	JMP, Volume 30, Issue 05, Page 1177

